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Zdenka Babić · Tomaž Dobravec · Patricio Bulić
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Abstract There is an increasing need for fast and efficient algorithms for the auto-
matic analysis of remote-sensing images. In this paper we address the implementa-
tion of the semantic classification of aerial images with general-purpose graphics-
processing units (GPGPUs). We propose the calculation of a local Gabor-based
structural texture descriptor and a structural texture similarity metric combined
with a nearest-neighbor classifier and image-to-class similarity on CUDA supported
graphics-processing units. We first present the algorithm and then describe the GPU
implementation and optimization with the CUDA programming model. We then eval-
uate the results of the algorithm on a dataset of aerial images and present the execu-
tion times for the sequential and parallel implementations of the whole algorithm as
well as measurements only for the selected steps of the algorithm. We show that the
algorithms for the image classification can be effectively implemented on the GPUs.
In our case, the presented algorithm is around 39 times faster on the Tesla C1060
unit than on the Core i5 650 CPU, while keeping the same success rate of classifica-
tion.
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R. Češnovar (�) · T. Dobravec · P. Bulić
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e-mail: vlado@etfbl.net

mailto:rok.cesnovar@fri.uni-lj.si
mailto:vlado@etfbl.net


A GPU implementation of a structural-similarity-based aerial-image 979

1 Introduction

One of the most important problems in aerial-image analysis is semantic classifica-
tion. The ultimate goal of the semantic classification of aerial images is to assign a
class from a predefined set, e.g., urban, industry, forest, etc., to each image pixel.
Since aerial images are frequently multi-spectral and of high resolution, in order to
reduce the computational complexity, this problem is usually approached by divid-
ing the aerial image into tiles, and assigning a class from a predefined set to each
tile. Such an obtained classification of image tiles can then be used in content-based
image retrieval or for constructing a thematic map, for example.

In recent years an image-similarity measure, which takes into account the prop-
erties of the human visual system, has been proposed [16, 17, 22–26]. It consists of
three terms. The first two are measures of the similarities between the means and
the standard deviations of the pixel values in respective images, and the third one
is a structural term, which is based on cross-correlations between the images being
compared. It is believed that the third term captures the structural information in the
images, which is very important for any image-similarity assessment by human sub-
jects. Therefore, this similarity measure is named the structural similarity measure
(SSIM). This SSIM has shown good results in image-quality assessments.

The main drawback of the proposed algorithms for aerial-image classification is
their computational complexity. But such an approach with the usage of structural-
similarity metrics has a large amount of inherent parallelism, so it can be effectively
implemented on parallel computers such as modern GPUs. Modern GPUs are low-
cost and powerful parallel platforms used to accelerate many applications, i.e. audio
processing [1], option pricing [5], sparse linear systems [6], medical imaging and
simulation [9, 19, 21], bioinformatics [4], scientific simulations [2, 20], and image
classification [18].

We focused on an optimized GPU implementation of the algorithm for aerial-
image classification proposed in [16], because we found that this classifier advances
the state-of-the-art. The optimization is based on the properties of the GPU we used.
We present the results of this implementation and the results of the optimization steps.
The method was implemented on graphics-processing units with the CUDA architec-
ture and programming model [3, 7, 14, 15].

This paper is organized as follows. In Sect. 2 the image representation and similar-
ity measure are introduced, and a nearest-neighbor classifier is presented. In Sect. 3
we propose the method for parallelizing and optimizing the algorithm explained in
Sect. 2. The experimental results are presented in Sect. 4. And, finally, in Sect. 5 we
outline the conclusions.

2 Aerial-image classification

In this section we give an overview of the method for aerial-image classification pro-
posed in [16]. A broad class of metrics, the structural similarity metrics (SSIM), that
attempt to incorporate structural information into image comparisons was proposed
in [22]. They are based on a set of local image statistics. These metrics are computed
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Fig. 1 Real components of the Gabor function with different parameter sets

after the channel decomposition that separates the images into sub-bands that are se-
lective for spatial frequency as well as orientation. As the frequency and orientation
representations of the Gabor filters are similar to those of the human visual system,
the authors in [16] chose to decompose the images using Gabor filters [8].

2.1 Gabor filters

The impulse response of a Gabor filter in a spatial domain corresponds to the value of
the Gabor function, which is defined as a product of the 2D Gaussian-shaped function
(the envelope) and a complex sinusoid (the carrier), as follows:

g(x, y) = e
− x′2+γ 2y′2

2σ2 · ei(2π x′
λ

+φ). (1)

Here, vector (x′, y′) represents a 2D rotation of the original vector (x, y) in the
clockwise direction θ , i.e.

[
x′
y′

]
=

[
cos θ sin θ

− sin θ cos θ

][
x

y

]
,

thus θ defines the orientation of the normal to the parallel stripes of a Gabor function
(see Fig. 1a and 1b).

In the Gabor function λ represents the wavelength of the sinusoidal factor (see
Fig. 1c), φ is the phase offset, σ is the standard deviation of the Gaussian envelope
and γ is the spatial aspect ratio and specifies the ellipticity of the support of the Gabor
function (see Fig. 1d).

Gabor filters are widely used in image processing (edge and pattern detection),
computer vision, neuroscience and psychophysics. A Gabor filter bank usually con-
sists of Gabor filters with various scales and orientations [8]. The filters in a Gabor
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Fig. 2 An example of calculating the correlations for a block (s, k, b) = (1,4,1) assuming S = 4, K = 6

filter bank can be considered as edge detectors with a tunable orientation and scale
so that the information on the texture can be derived from the statistics of the out-
puts of those filters. In the feature-extraction phase of the method used in this paper,
the input image is convolved with a Gabor filter bank at S scales and K orientations
resulting in SK sub-bands. Each sub-band is partitioned into a grid of

√
B × √

B

blocks, where B represents the total number of image blocks.
For each (s, k, b) ∈ {1, . . . , S} × {1, . . . ,K} × {1, . . . ,B} let G(s,k) denote the Ga-

bor filter at scale s and orientation k, and let Y(s,k) denote the filter response (i.e., the
convolution of the input image and the Gabor filter G(s,k)) and Yb

(s,k) its bth block
(blocks are enumerated using the row-major order).

For each block Yb
(s,k) the following statistics are computed:

1. the means (i.e., the expected value)

μb
(s,k) = E

(
Yb

(s,k)

)
,

2. the standard deviations

σb
(s,k) = E

((
Yb

(s,k) − μb
(s,k)

)2)
,

3. the Pearson cross-correlation (Fig. 2) with other sub-bands (s1, k1) where (a) s1 =
s, k1 = 1, . . . ,K , k1 �= k (the same scale, different orientations) and (b) k1 = k,
s1 = 1, . . . , S, s1 �= s (the same orientation, different scales),

ρb
(s,k)(s1,k1)

= corr
(
Yb

(s,k), Y
b
(s1,k1)

)

= E((Y b
(s,k)

− μb
(s,k)

)(Y b
(s1,k1)

− μb
(s1,k1)

))

σ b
(s,k)σ

b
(s1,k1)

.
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Fig. 3 Each block b of a sub-band (s, k) is associated with an (ST) descriptor set with S + K coefficients

In the above equations, E(Y) denotes the expected value or mean of all values of
the random variable Y . Each block b is now described with (S + K)SK coefficients
stored in a structural texture (ST) descriptor set (Fig. 3)

ST = {
μb

p;p ∈ S × K
} ∪ {

σb
p;p ∈ S × K

}
∪ {

ρb
p1p2

;p1,p2 ∈ S × K,p1 ∼ p2
}
,

where S = {1, . . . , S}, K = {1, . . . ,K} and the relation ∼ requests equality in exactly
one pair component (i.e., (s1, k1) ∼ (s2, k2) ⇐⇒ s1 = s2 ⊕ k1 = k2; here ⊕ works
like an exclusive or operator, meaning that autocorrelations ρb

(s,k)(s,k) are not included
in ST ).

2.2 Similarity metrics

Wang et al. [22] proposed comparing two images by looking at their luminance, con-
trast and structure. For the image blocks b1 and b2 and for any p ∈ S × K they defined
the luminance comparison lp(b1, b2) as the similarity of the mean values:

lp(b1, b2) = 2μ
b1
p μ

b2
p

(μ
b1
p )2 + (μ

b2
p )2

. (2)

Similarly, they proposed the contrast-comparison function cp(b1, b2) as the similarity
of the standard deviations:

cp(b1, b2) = 2σ
b1
p σ

b2
p

(σ
b1
p )2 + (σ

b2
p )2

. (3)
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The comparison of the image structures is performed by averaging the similarities
of all the cross-correlations [26]:

rp(b1, b2) = 1

S + K − 2

∑
p1∼p

(
1 − 0.5

∣∣ρb1
pp1

− ρb2
pp1

∣∣). (4)

To compute the similarity between two images, the algorithm from [16] uses the
similarity metrics already proposed in [22], i.e., the following similarity metrics be-
tween two signals x and y:

Q(x,y) = lα(x, y)cβ(x, y)rγ (x, y) (5)

where α > 0, β > 0 and γ > 0 are the parameters used to adjust the relative impor-
tance of the three components. The authors in [16] compute the similarity between
two blocks, b1 and b2, by averaging their similarities in all sub-bands:

Q(b1, b2) = 1

SK

∑
p∈S×K

l
1
3
p (b1, b2)c

1
3
p (b1, b2)r

1
3
p (b1, b2). (6)

2.3 Image-classification based on ST-descriptors

The problem of image classification consists of assigning a test image I to a class from
the predefined set {C1,C2, . . . ,Cm}. The image I is classified to the class for which
the similarity measure is maximal (nearest neighbor). Each image is partitioned into
B blocks, i.e., I = {b1, b2, . . . , bB}. The block-to-class similarity is defined as

Q(b,C) = max
c∈C

Q(b, c). (7)

The similarity of the image I = {b1, b2, . . . , bB} to the class C is based on the
block-to-class similarity and is defined as

Q(I,C) =
B∏

i=1

Q(bi,C). (8)

The classification of the image I = {b1, b2, . . . , bB} is performed using the algo-
rithm from [16] in the following way:

1. Calculate the ST descriptor sets for all the blocks b1, b2, . . . , bB .
2. For each block bi , i = 1, . . . ,B , and for each class Cj , j = 1, . . . ,m, compute the

block-to-class similarity Q(bi,Cj ).
3. Compute the image-to-class similarity Q(I,Cj ) between the image I and each

class Cj , j = 1, . . . ,m.
4. Assign the image I to the class C for which the maximum similarity has been

obtained.
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3 GPU Implementation

In this section we present the optimized GPU implementation of the algorithm ex-
plained in Sect. 2 and previously proposed in [16]. The presented implementation
follows the recommendations in [11].

3.1 Calculation of the ST descriptors

As explained in Sect. 2, the first step in image classification is to calculate the ST de-
scriptors for an image I . This calculation is performed by filtering the image with the
Gabor filters from the filter bank. The filtering is done in frequency space to reduce
the required number of arithmetic operations. The ST descriptors are calculated for
all blocks b1, b2, . . . , bB in an input image I .

The input data needed to compute the ST descriptors are:

1. the set of images that need to be classified, I
2. the Fourier transforms of the Gabor filters, FF T (G(s, k)), which are calculated

only once and stored in the filter bank.

This computation of the ST descriptors is implemented in five steps:

1. Calculate the discrete FFT for all the images to be classified, FF T (I ), for all
I ∈ I ,

2. Calculate the element-wise products FF T (I ) × FF T (G(s, k)) for all I ∈ I and
for all sub-bands (s, k) ∈ {1, . . . , S} × {1, . . . ,K}

3. Calculate the inverse FFT of each product, i.e. Y(s, k) = I FF T [FF T (I ) ×
FF T (G(s, k))]

4. For each (s, k, b) ∈ {1, . . . , S} × {1, . . . ,K} × {1, . . . ,B}, calculate the means
μb

(s,k) and the standard deviations σb
(s,k) for a block Yb

(s,k).

5. Calculate the cross-correlations ρb
(s,k)(s1,k1)

with the other sub-bands. Note that

ρb
(s1,k1)(s,k) = ρb

(s,k)(s1,k1)
, thus we need to calculate only half of the cross-

correlations.

For each step we implement a CUDA kernel. Each CUDA kernel and associated
thread/block organization are explained in the following subsections.

3.1.1 Computation of discrete FFTs

To compute the discrete FFT for each image I ∈ FF T (I ) we use the CUFFT Li-
brary [12]. In order to speed-up the computation of the discrete FFT, we applied batch
execution. The batch execution is used to find the discrete FFT of multiple images in
parallel in a single call. This is much more efficient than simply calling the FFT over
and over in a loop since some of the intermediate twiddle factors can be reused. The
batch input parameter in this step is the number of images NI in FF T (I ).

3.1.2 Computation of the filter responses in the frequency domain

Each image I is now filtered with a Gabor filter bank, resulting in S × K sub-bands.
Each image has a size of M × M , where M depends on the dataset and is 256 in our
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case. Each thread now computes one product between the pixel in the input image I

and the pixel at the same position in the Gabor filter. The input for this step is the NI

transforms of the input images and the S × K transforms of the Gabor filters. The
thread organization in this step is as follows:

1. the number of threads in a block is 16 × 16,
2. the number of blocks in a grid is

[
M2/(16 × 16)

] × [
(S × K) × NI

]
.

In such a way for each sub-band we use [M2/(16×16)] blocks of threads to compute
the filter response of an input image.

3.1.3 Computation of inverse transforms

Now we have to compute the discrete inverse FFT for each filter response in the fre-
quency domain. The input for this step is composed of (S × K) × NI filter responses
in the frequency domains, i.e., (S × K) sub-bands for each input image. Again, we
apply the batch execution available in the CUFFT library, where the batch parameter
is equal to the number of filter responses, i.e., (S × K) × NI .

3.1.4 Computation of mean values and standard deviations

In this kernel we compute the mean values and the standard deviations for each of the
blocks b1, b2, . . . , bB in an input image I . After filtering we have (S ×K) sub-bands
for each input image, and thus the input for this step is composed of (S × K) × NI

filter responses. Each filter response is partitioned into a grid of
√

B × √
B blocks,

where B represents the total number of blocks in one filter response. In the current
implementation of the proposed algorithm, the total number of blocks B is 16.

One thread is used to calculate the μb
(s,k) and σb

(s,k) for each block Gb
(s,k). Thus we

need to create (S × K) × NI × B threads that are organized as follows:

1. The number of threads in a block is
√

B × √
B × 16, i.e., each block of threads

works on 16 images in parallel. In such a way we keep each streaming multipro-
cessor busy.

2. The number of blocks in a grid is

[
(S × K)

] × [NI/16]

The reader may notice that the number of blocks in the grid increases with the
number of images NI . In the case of a very large number of images to be classified
(more than 2100) we should fix the number of blocks in the grid and implement the
threads in such a way that each thread calculates the mean and the standard deviations
for more than one block. However, for the image dataset used in this paper this is not
the case.
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Algorithm 1 The pseudo-code of the kernel for the cross-correlation computation
1: s = blockIdx.x/K; k = blockIdx.x%K;
2: b = threadIdx.x*

√
B + threadIdx.y;

3: I = blockIdx.y;
4: s1 = k1 = threadIDx.z;
5:

6: if s != s1 then

7: ρb
(s,k)(s1,k)(I ) = E((Y b

(s,k)
−μb

(s,k)
)(Y b

(s1,k)
−μb

(s1,k)
))

σ b
(s,k)

σ b
(s1,k)

8: end if
9: if k != k1 then

10: ρb
(s,k)(s,k1)

(I ) = E((Y b
(s,k)

−μb
(s,k)

)(Y b
(s,k1)

−μb
(s,k1)

))

σ b
(s,k)

σ b
(s,k1)

11: end if

3.1.5 Computation of cross-correlations with other sub-bands

In this kernel we compute cross-correlation with the other sub-bands. The input for
this kernel is composed of (S × K) × NI filter responses. Each filter response is
partitioned into the grid of

√
B ×√

B blocks, where B represents the total number of
blocks in one filter response. In the current implementation of the proposed algorithm,
the total number of blocks B is 16.

One thread is used to calculate ρb
(s,k)(s1,k1)

between two blocks Yb
(s,k) and Yb

(s1,k),

i.e., a sub-band with the same orientation, and between two blocks Yb
(s,k) and Yb

(s,k1)
,

i.e., a sub-band with the same scale. In this kernel we launch (S × K) × NI × B ×
max(S,K) threads that are organized as follows:

1. the number of threads in a block is
√

B × √
B × max(S,K), i.e. each block of

threads works on max(S,K) orientations or scales in parallel. In such a way we
keep each streaming multiprocessor busy.

2. the number of blocks in a grid is
[
(S × K)

] × [NI ]
Algorithm 1 contains the pseudo-code for the computation of the cross-correlation

coefficients. G[s][k][b] represents the bth block of the filter response, while
ST [s][k][b] represents the descriptor of the bth block, both at the scale s and the
orientation k. The first coefficient of the descriptor is the mean, followed by the
standard deviation and the cross-correlation coefficients, as described in Sect. 2.

3.2 Classification

We propose two different ways to parallelize the classification method, depending
on the number of blocks (B) in an image I . We will refer to them as the full-image
parallel and the block-wise parallel classification. The pseudo-code of the sequential
classification is shown in Algorithm 2 and should help the reader to understand the
proposed classification algorithm.
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Algorithm 2 The pseudo code of the sequential classification
1: for c = 1 to m do � m is the number of classes
2: for i = 1 to B do
3: for j = 1 to mc do � mc is the number of labeled images in class c

4: for k = 1 to B do
5: q(i, kc

j ) =block similarity(I (i), labeled(c, j, k))

6: � kc
j is the kth block of the j th labeled image from class c

7: end for
8: end for
9: Q(i, c) = max ( q(i, :) )

10: end for
11: Q(I, c) = product ( Q(:, c) )
12: end for
13: C = index of max(Q)

14: return C

When to use either of them depends on the compute capability(CC) of the
GPU [13]. If (CC = 1.X ∧ B ≤ 16) ∨ (CC = 2.X ∧ B ≤ 25) the use of full-image
parallel computation is recommended, due to a significant improvement in the speed
(see Sect. 4). Otherwise, the block-wise parallel classification should be used, due to
restrictions on the number of threads in a block (for details see Sect. 3.4).

For the purpose of parallelization, we divided the classification of the test image
into three steps:

1. the computation of the similarity metrics Q(b1, b2) between two blocks b1 and b2
using Eq. (6),

2. the computation of the block-to-class similarities Q(b,C) using Eq. (7) and
3. the computation of the image-to-class similarities Q(I,C) using Eq. (8).

Each of the above steps is implemented with a different kernel and thread organi-
zation. Before the parallelized classification, we need to transfer all the precomputed
ST-descriptors for the labeled images in the device’s global memory. If we only paral-
lelize the classification step, we also need to transfer the ST-descriptors for the images
that are not yet classified; otherwise they are already present in the global memory of
the device.

The input data to the above steps are the ST descriptors of the images that should
be classified (test images) and the ST descriptors of the labeled images. Let us sup-
pose that we have NI test images and NL labeled images.

3.3 Full-image parallel classification

3.3.1 Computation of similarity metrics

In the computation of similarity metrics a single thread computes one similarity met-
ric Q(bI

i , b
L
j ) between the block i from the test image I and the block j from the

labeled image L. The threads are organized as follows:
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1. the number of threads in a block is (
√

B × √
B) × (

√
B × √

B), i.e., one thread
block computes the similarity metrics between all the blocks from a test image
and all the blocks from a labeled image.

2. the number of blocks in a grid is (NI × NL).

The threads in a block work as follows: all the threads with the same index on the
x-axes (index t idx ) compute the similarity metrics Q(bI

tidx
, bL

j ), j = 1, . . . ,B , while
all the threads with the same index on the y-axes (index t idy ) compute the similarity
metrics Q(bI

i , b
L
tidy

), i = 1, . . . ,B .

The result of this step (kernel) is an array of NI × NL × B2 similarity metrics.

3.3.2 Computation of block-to-class similarities

After computing the similarity metrics, we run the second kernel where a single
thread computes one block-to-class similarity Q(bI

i ,Cj ) between the block i from
the test image I and the class j . The threads are organized as follows:

1. the number of threads in a block is (
√

B × √
B) × 16, i.e., one thread block com-

putes the block-to-class similarity metrics between all the blocks from 16 test
images and one class;

2. the number of blocks in a grid is (NI /16) × m, where m is the number of classes.

The result of this step (kernel) is an array of NI ×m×B2 block-to-class similarity
metrics.

3.3.3 Computation of image-to-class similarities

With this last kernel each thread in a block computes the image-to-class similarity
Q(Ii,Cj ) between the test image i and the class j . The threads are organized as
follows:

1. the number of threads in a block is m (where m is the number of classes), i.e. one
thread block computes the image-to-class similarity metrics between one image
and all the classes;

2. the number of blocks in a grid is NI .

The number of threads in a block is relatively small; therefore, the streaming mul-
tiprocessors are not optimally loaded. Nevertheless, the computation on the GPU is
still faster than the computation on the host CPU (that would also involve the data
transfer to the host memory).

3.3.4 Shared memory

In the first step all the threads in a block calculate the similarity metrics Q(bI
i , b

L
j )

between two images that are described with two ST descriptors. To improve the per-
formance, we would like to keep both descriptors in the shared memory. Each de-
scriptor has a size of B × S × K × (S + K). In practice, B is usually 16, K is 6
and S is 4. This leads to a descriptor with a size of 3840 floats (15360 bytes). As in
GPUs with CC = 1.X, the shared memory has a size of 16 kB, we can hold only one
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descriptor at a time in the shared memory if B > 8, K = 6 and S = 4. In GPUs with
CC = 2.X we can have both descriptors in the shared memory when B < 25, K = 6
and S = 4.

The impact of using the shared memory is discussed and presented in Sect. 4.

3.4 Block-wise parallel classification

In the full-image parallel classification (Sect. 3.3), the first step required B × B

threads in a block. NVIDIA’s specifications state that the maximum number of
threads per block is 512 (CC = 1.X) or 1024 (CC = 2.X). This means that we can
only divide an image into up to 16 blocks for CC = 1.X or up to 25 blocks for
CC = 2.X. In the cases when the number of blocks is larger than 16, we propose the
block-wise parallel classification, as follows.

3.4.1 Computation of similarity metrics

In the computation of similarity metrics a single thread computes one similarity met-
rics Q(bI

i , b
L
j ) between the block i from the test image I and the block j from the

labeled image L. The threads are organized as follows:

1. The number of threads in a block is now reduced and fixed, i.e. the number of the
threads in a block is (

√
B ×√

B)× (�256/B�), i.e., one thread block computes the
similarity metrics between (�256/B�) blocks from a test image and all the blocks
from a labeled image.

2. The number of blocks in a grid is [(NI /(�256/B�)] × [NL × B]).

3.4.2 Computation of block-to-class similarities

After computing the similarity metrics, we run the second kernel where a single
thread computes one block-to-class similarity Q(bI

i ,Cj ) between the block i from
the test image I and the class j . Again, we have to reduce the number of threads in a
block. The threads are now organized as follows:

1. The number of threads in a block is (
√

B × √
B) × (�256/B�), i.e., one thread

block computes the block-to-class similarity metrics between all the blocks from
(�256/B�) test images and one class.

2. The number of blocks in a grid is (NI /(�256/B�)) × m, where m is the number
of classes.

3.4.3 Computation of image-to-class similarities

Here, the number of threads in a block and the thread organization is the same as in
the full-image parallel classification, because the number of classes m is relatively
small.
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4 Experimental results

For the evaluation of the classifier we used the UC Merced Land Use Dataset, which
is publicly available at http://vision.ucmerced.edu/datasets/landuse.html. This dataset
has recently been used in similar experiments [24].

The UC Merced Land Use Dataset consists of aerial images of 21 land-use classes.
All the images are 256 × 256 pixels and in RGB colorspace. They are manually clas-
sified into the following 21 classes: agricultural, air-plane, baseball diamond, beach,
buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersec-
tion, medium density residential, mobile home park, overpass, parking lot, river, run-
way, sparse residential, storage tanks, and tennis courts. Each class contains 100 im-
ages, which makes this dataset the largest publicly available dataset for remote sensed
image classification.

We filter each image using a Gabor filter bank at four scales and six orientations,
and compute ST-descriptors for sub-band blocks on 1 × 1 (global sub-band coeffi-
cients statistics), 2 × 2, and 4 × 4 grids. We use 80 % of the images from each class
as labeled images, and the rest as test images. We repeated the experiment five times
with different random splits of the dataset, and averaged the results. The results of
the aerial-image classification accuracy can be found in [16].

4.1 Comparison of CPU and GPU implementations

The experiments for the sequential implementations were performed using the HP
Compaq 8100 Elite CMT PC (Intel(R) Core(TM) i5 650 CPU, that operates at 3.2
GHz, 4 GB DDR3 RAM that operates at 1.33 GHz, 128 kB L1, 512 kB L2, 4 MB L3).
The experiments for the GPU implementation were performed using the NVIDIA
Tesla C1060 Computing Processor with 240 processor cores and 4 GB GDDR3 with
102 GB/s peak bandwidth per GPU [10]. The NVIDIA Tesla C1060 is installed in
the same HP Compaq 8100 Elite CMT PC.

The measurements were performed for the computation of the ST descriptors and
the classification individually, as well as both steps together.

First, we present the execution times for the computation of the ST descriptors
and the classification, separately. Then we present the execution times for the whole
algorithm, i.e., the ST descriptors’ computation plus classification.

4.1.1 Computation of the ST descriptors

The computation of the ST descriptors is required for each test image and for each
labeled image. The former computation is performed only once and the ST descrip-
tors of the labeled images are stored in the memory. Figure 4 presents the execution
time for the ST descriptors’ computation. In every run of the algorithm proposed in
this paper, the computation of the ST descriptors for all the test images is required.
With the CPU implementation, the computation of the ST descriptors for a single test
image takes 130 ms and 51 ms with the GPU implementation, so the speed-up factor
is around 2.54. The computation of the ST descriptors for 500 test images on the CPU
takes 65.71 seconds and 25.57 on the GPU, thus the speed-up factor is around 2.56.

http://vision.ucmerced.edu/datasets/landuse.html
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Fig. 4 Execution times for the ST descriptors’ computation

As each image has 256×256 pixels, up to around 300 images can reside in the global
memory of the device. If there are more test images, the computation is split into two
or more equal steps. This is the reason for a steeper rise of the execution time when
the number of images is a factor of 300. We can see this in Fig. 4.

4.1.2 Classification

In Fig. 5 we can see the execution times for the classification step on the GPU for the
whole UC Merced Land Use Dataset containing 2100 images. We can see that the use
of the shared memory reduces the execution time. When classifying one test image,
the shared memory reduces the execution time by around 17 %. When classifying
more images, the impact of the shared memory becomes less significant, due to longer
execution times for the other parts of the classification.

When performed on the whole dataset, the CPU implementation takes 4.36 s to
classify one image, while the GPU full-image parallel classification takes 63 ms.
When classifying 500 images, the classification takes 36 minutes on the CPU, while
the GPU implementation takes 31 seconds.

Figure 6 shows the speed-up factors for the GPU-based classification of the whole
dataset. The maximum speed-up factor is approximately 69 for the full-image parallel
classification when using the shared memory and approximately 67 without using
the shared memory. This maximum speed-up is reached when we classify four test
images. As stated in Sect. 3.4, when B ≥ 25, we have to use the block-wise parallel
classification. The speed-up factor for the block-wise parallel classification is around
62 and is presented in Fig. 6.
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Fig. 5 Execution times of the classification procedure for the whole UC Merced Land Use Dataset

Fig. 6 Speed-up factor for the GPU-based classification for the whole UC Merced Land Use Dataset

In the previous figures we presented the execution times and speed-up factors
when the number of labeled images is constant. Figure 7 presents the speed-up fac-
tor when we classify only one test image against various numbers of labeled images.
The maximum speed-up factor for the classification of one test image on the GPU
using the shared memory is around 70. Even with very small sets of labeled images
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Fig. 7 Speed-up factor for the GPU-based classification of one test image

(NL < 10) the speed-up factor is around 30. Without the shared memory the maxi-
mum speed-up factor is 46, when NL = 606.

4.2 Computation of the ST descriptors and classification

The last measurements were performed for the whole algorithm (the computation
of the ST descriptors plus the classification). The implementation of the algorithm
includes the transfer of the input images to the device, the transfer of the precomputed
ST descriptors of the labeled images to the device and the transfer of the image-to-
class similarities back to the host machine.

Figure 8 presents the execution times of the whole aerial-image classification al-
gorithm. We can see that, even though there is an additional overhead in the parallel
implementation, the GPU implementation is still faster. This is also true even for the
classification of a single image.

The larger part of the execution time is consumed by the classification; with 500
test images the ratio between the classification time and the ST descriptor computa-
tion is around 1.22:1 on the GPU and 33:1 on the CPU.

For the whole UC Merced Land Use Dataset the CPU takes 4.49 s to classify an
image, while the GPU performed in 114 ms, resulting in a speed-up factor of 39. The
speed-up factor for various numbers of test images is presented in Fig. 9. Again, the
speed-up factor reaches its maximum at around four test images.
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Fig. 8 Execution time for the algorithm with the full-image parallel classification

Fig. 9 Speed-up factor for the GPU implementation of the algorithm with the full-image parallel classifi-
cation

5 Conclusions

In this paper we proposed the GPU implementation of a nearest-neighbor classifier
using local Gabor-based structural texture descriptors and structural texture similarity
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for the semantic classification of aerial images. We tested the performance of the
GPU-implemented classifier on a real dataset of aerial images.

The main drawback of such a classifier is its computational complexity, which
could be overcome with a GPU implementation due to a large amount of parallelism
inherent to the proposed classifier. We showed that it benefits from the use of the
parallel implementation, even for very small datasets and the very small number of
images that are classified.

The results show that for the given dataset with images of the size 256 × 256 pix-
els, the parallel computation of the ST descriptors alone is around 2.54 times faster
than the sequential implementation. Meanwhile, the parallel implementation of the
classification alone is even more than 69 times faster than the sequential classifica-
tion. If we parallelize both steps in the classification we can see that for the whole
dataset the speed-up is around 39. Our experimental results show that the classifi-
cation step contributes the most to the execution time of the algorithm on the CPU.
With the use of massively parallel processing units we have successfully decreased
this ratio.

Furthermore, our experimental results show that we can successfully harness the
power of the massively parallel processing units and overcome the computational
complexity of the whole algorithm, and thus the algorithm can be run in a reasonable
amount of time.
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