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Abstract—Convolutional neural networks (convnets) have
made possible a number of breakthroughs in image classification
and other computer vision problems. However, in order to
successfully apply convnets to a new task it should be trained on
a large set of labeled samples. Acquisition of a large number of
manually labeled remote sensing images requires highly trained
analysts which makes it a very expensive task. This is the main
reason why we still lack large training sets of remote sensing
images. Nevertheless, convnets can still be applied to remote
sensing image classification by virtue of using convnets pretrained
on another large dataset and fine-tuned to the task at hand.
In this paper we investigate the use of pretrained and fine-
tuned convnets for both end-to-end classification and feature
extraction from remote sensing images. We analyze the quality of
the features extracted from various layers of the network from the
standpoint of classification accuracy. Using a fine-tuned ResNet
we obtain classification accuracy of over 94% on challenging AID
dataset.

Keywords—remote sensing image classification; convolutional
neural networks; fine-tuning; feature extraction

I. INTRODUCTION

Convolutional neural networks (convnets) have achieved
state-of-the-art results and become the method of choice for
various image classification tasks [1], [2]. The main obstacle
in application of convnets to a new problem domain is the
need for large labeled training sets. One of the areas where
this problem can be observed is remote sensing image classi-
fication. Labeling of remote sensing images is expensive since
it requires trained image analysts and, as a consequence, the
available datasets of remote sensing images are considerably
smaller than the datasets commonly used for training of
convnets.

However, it has been shown that convnets trained on one im-
age classification task can be used for feature extraction from
images in a completely unrelated problem and still achieve
excellent results [3]. This approach has also been successful in
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remote sensing image classification [4]–[6]. The most common
technique for feature extraction using convnets has been to
use the activations of the last fully connected layer before the
softmax. However, it has been observed that activations of
lower convolutional layers may be more appropriate as image
features in scenarios where the distribution of images in the
target task significantly differs from the distribution of images
in the original task [7]. This is exactly the case when pretrained
convnets are used for feature extraction in remote sensing
image classification. Therefore, one of our goals in this paper
is to analyze the quality of the features extracted from various
layers of the network and identify the layer of a pretrained
convnet which is the best choice for feature extraction in
remote sensing image classification.

The performance of a pretrained convnet can be further
improved through fine-tuning of the weights. During fine-
tuning the topmost softmax layer is replaced with the new
softmax layer having as many units as there are classes
in the target task and the convnet is trained starting from
the pretrained weights of the remaining layers. In this way,
the weights are initialized to the values which ensure good
performance on the original problem. As a result, the training
converges to a better minimum of the cost function than
when random weight initialization is used. It has been shown
that fine tuning convnets pretrained on ImageNet yields good
classification results on datasets of remote sensing images
[5], [6]. Nevertheless, fine tuning is still very computationally
intensive and it is unclear how a fine tuned network will cope
with covariate shift caused by common variations in remote
sensing images, such as using different sensors, changes in
lighting and scale, as well as architectural differences in
various parts of the world.

In this paper we evaluate two modern convnet architec-
tures on the task of high resolution remote sensing image
classification. We use convnets pretrained on ImageNet and
aim to assess their applicability to remote sensing image
classification. To this end we investigate fine-tuning of the
weights on a dataset of remote sensing images. Next, we use
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convnets as feature extractors and train linear support vector
machine (SVM) classifier using the extracted features. We
extract several sets of features by pooling the activations from
various convolutional layers and assess their suitability for
remote sensing image classification.

The main contributions of this paper are: evaluation of
modern convnet architectures on a challenging dataset of high-
resolution remote sensing images, analysis of the features ex-
tracted from different layers of the network from the standpoint
of classification accuracy, and analysis of the transferability of
the features obtained using a fine-tuned convnet in the presence
of variations common for remote sensing images.

The rest of the paper is organized in the following way.
In Section II we review the previous work on using convnets
for image classification in general, as well as remote sensing
image classification. Then, in Section III we present the used
convnets topologies and datasets. The classification results are
presented and discussed in Section IV. The Section V is the
conclusion.

II. BACKGROUND AND RELATED WORK

Original concept of ConvNets dates back to Fukushima’s
“neocognitron” [8], the first artificial network that was in-
variant to image translations. Inspired by neocognitron, Lecun
in [9] introduced LeNet, the first convnet architecture, and
applied it to digit recognition. In spite of the promising results,
convnets slowly gained popularity due to the lack of compu-
tational power and large labeled datasets needed for training.
ImageNet dataset [10] with 1.2 million images divided into
1000 categories and availability of GPU implementations [1]
are responsible for recent surge of popularity of convnets.

In order to improve performance in visual recognition, many
convnet architectures have been proposed. In [11] it has been
shown that significant improvement in classification accuracy
can be achieved by increasing depth of a convnet. In [12] the
topology of the network is crafted in such a way to increase
both its depth and width. Furthermore, multiscale processing
is used by introducing Inception modules which contain filters
with different kernel sizes.

Although deeper neural networks show better results, they
are hard to train and prone to overfitting, especially when
small datasets are used for training. In order to overcome these
shortcomings, in [2] the residual learning network (ResNet)
was proposed. It contains shortcut connections bypassing
convolutional layers which enables easier training of ResNets
compared to plain deep convnets.

It was not only the rapid development of new convnet
architectures that boosted the rise of convnets. In [3] it has
been shown that a convnet trained on one image classification
task can be used for extraction of features usable for various
vision tasks, completely unrelated to the original one. In [7]
the generalization ability of convnets was further investigated
and fine-tuning of network feature filters to the task at hand
was proposed.

Increasing popularity of convnets led to their use in remote
sensing applications [13]. A number of approaches evaluated
pretrained and fine-tuned convnets in high-resolution remote
sensing image classification [4], [5], [14] and retrieval [15].
The question here is whether the features, extracted using
a convnet pretrained on ImageNet dataset, can be used for
classification of remote sensing images. In other words, are
the features, extracted from pretrained or fine-tuned convnets,
general enough to be used for classification of remote sensing
images? In [6] a detailed evaluation of various approaches for
utilizing convnets for remote sensing image classification is
performed and SVM trained using features extracted from the
fine-tuned convnet has shown the best performance.

The main obstacle to using convnets in remote sensing is
the lack of large labeled remote sensing datasets, needed for
training. To remedy this setback, in [16] two large datasets of
remote sensing images, SAT4 and SAT6, are introduced. End-
to-end training of modern convnet architectures on SAT4 and
SAT6 is described in [17] and [18] and excellent results have
been achieved. Altough SAT4 and SAT6 are large datasets and
make end-to-end training of convnets possible, images from
them represent very small patches of remote sensing images,
and are divided into only 4 and 6 categories, respectively. It
is still an open research question whether the convnets trained
on SAT4 and SAT6 will be useful for classification of more
complex high resolution remote sensing scenes.

The importance of benchmark datasets for further develop-
ment in high resolution remote sensing scene classification is
emphasized in [19]. A new challenging dataset with 10,000
images divided into 30 classes is proposed. We describe this
dataset in Section III and use it for evaluation of two modern
convnet architectures.

III. MATERIAL AND METHODS

In this Section we describe the used datasets and convnet
architectures as well as the evaluation methodology.

A. Datasets

In this work we use two datasets of high resolution aerial
images. The first one is AID dataset [19], a large scale remote
sensing dataset which is constructed by collecting sample
images from Google Earth. It contains 10,000 images divided
into 30 aerial scene types: airport, bare land, baseball field,
beach, bridge, center, church, commercial, dense residental,
desert, farmland, forest, industrial, meadow, medium residen-
tal, square, stadium, storage tanks, and viaduct. The number
of images per class varies from 220 to 420. In order to increase
intra-class variability the images are obtained from several
countries, in different times and seasons, and under different
imaging conditions. All images are RGB, 600 × 600 pixels
with spatial resolutions ranging from about 8 meters to about
50 cm.

AID dataset addresses several shortcomings of the existing
datasets. First, each class features a high diversity among
sample images. This is mainly caused by imaging conditions,
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e.g. the flying altitude and lighting condition which vary a
lot. Secondly, AID dataset has small inter-class dissimilarity,
in order to make it closer to real aerial image classification
tasks. Images from different classes contain similar objects
thus increasing demands for stronger generalization capability
of a classification algorithm. Thirdly, AID dataset is the largest
annotated aerial image dataset available to date, therefore
it covers a broader range of aerial images and is a better
benchmark for evaluation of image classification methods.

We also use UC Merced (UCM) dataset which consists
of RGB images with the pixel resolution of one foot (30
cm). This dataset, first introduced in [20], was made from
the United States Geological Survey (USGS) National Map
images. It consist of 2100 images that are divided into 21
classes: agricultural, airplane, baseball, diamond, beach,
buildings, chaparral, dense residential, forest, freeway, golf
course, harbor, intersection, medium density residential, mo-
bile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts, with 100 images
per class. UCM dataset is a long-standing benchmark in
remote sensing scene classification. In this paper we use it to
assess the transferability of features generated using a convnet
fine-tuned on a different dataset of remote sensing images.

B. Convnet Architectures

Previous work [19] evaluated two traditional convnet archi-
tectures, namely CaffeNet and VGG VD 16, as well as a more
modern GoogLeNet, on AID dataset. In this work we evaluate
two convnet architectures, which contain several new elements
known to improve classification accuracy and convergence, as
well as to reduce model size, on the task of large scale scene
classification from high-resolution remote sensing images.

1) ResNet: Deep residual networks (ResNet) address the
problem of training very deep convnets. More specifically, it
has been observed [2] that, although deeper networks achieved
better performances on image classification benchmarks, after
a certain threshold adding more layers may result in higher
training error. The main building blocks of ResNet are residual
blocks with shortcut connections which bypass convolutional
layers and make learning of the identity mapping easier as
shown in Fig. 1. ResNets are constructed by stacking residual
blocks and may be significantly deeper than the most success-
ful architectures thus far. The experimental results show that
these networks are easier to optimize and improve the accuracy
on several computer vision benchmarks. Furthermore, in order
to reduce the number of parameters, bottleneck building blocks
have been proposed. In this paper, we use 50-layer ResNet
architecture.

2) SqueezeNet: In [21] a convnet architecture that achieves
AlexNet accuracy but with 50% less parameters and the
model size smaller than 0.5 MB has been developed. The
main building block of this architecture is Fire module which
consists of two layers: Squeeze layer and Expand layer, as
depicted in Fig. 2. Squeeze layer consists of 1×1 convolution
filters, while Expand layer has a mix of 1×1 and 3×3 filters.
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Fig. 1. Residual block.

1x11x1 1x11x1 1x11x1

1x11x1 1x11x1 1x11x1 1x13x3 3x3 3x3

Squeeze layer

Expand layer
ReLuReLu

ReLu

Fig. 2. The Fire module.

SqueezeNet architecture begins with a standalone convolution
layer, followed by 8 Fire modules, and ending with a final
convolution layer. After the first convolution layer and third
Fire module, max pooling with stride 2 is applied. To prevent
overfiting, dropout is applied after the last Fire module.

C. Evaluation Methodology

The main goal of this paper is to evaluate ability of convnets
for scene classification in remote sensing images. To this end,
we evaluate two approaches based on convnets pretrained on
ImageNet. The first one is to fine-tune a convnet and use it for
classification of remote sensing images, while the other is to
use a convnet for feature extraction and then to use linear
SVM for classification. In the first approach, we consider
both the case when we freeze the weights of the hidden
layers and only train the topmost softmax layer, and the case
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when all the layers are fine-tuned. In the second approach,
for feature extraction we use the pretrained network without
as well as with fine-tuning on AID dataset. Feature vectors
are constructed by spatial average pooling of feature maps at
the output of a specific layer. Finally, we use the networks for
feature extraction from UCM dataset and train SVM classifier.
This last experiment is meant to investigate the ability of fine-
tuned convnets to extract useful features from other datasets
of remote sensing images subject to differences in resolution,
sensors, imaging conditions, etc.

IV. EXPERIMENTAL RESULTS

In the experiments presented in this section, we evaluate
convnets for remote sensing image classification, as well as for
extraction of features which are then used for training SVM
classifier. For implementation of convnets we used Python
and deep learning library Keras [22]. The experiments are
performed on TITAN X GPU with 12 GB of RAM.

A. Classification Using Convnets

In the first set of experiments, we evaluate convnets for
classification of images from AID dataset. We start with
convnets pretrained on ImageNet dataset with 1000 object
categories. Therefore, their topmost softmax layer has 1000
units. AID dataset has only 30 categories, and we replace the
topmost softmax layer with 1000 units with another softmax
layer with 30 units. Then, we consider two scenarios. First, we
keep frozen the weights of all convolutional layers and train
only the weights of the topmost softmax layer, and second,
we fine-tune all the weights. In order to compare the results
with [19], we randomly choose 50% of images for testing,
40% for training, and the remaining 10% for validation. We
repeat the experiment for 10 random splits and report means
and standard deviations of classification accuracy.

Although AID dataset is the largest manually labeled dataset
of remote sensing images to date, the classification accuracies
obtained using convnets trained from scratch are considerably
lower than those obtained using pretrained convnets. Conse-
quently, we did not include the experiments with convnets
trained solely on AID dataset into this paper.

During the training we perform training data augmentation
by randomly flipping images horizontally and vertically and
by rotating them for a random angle between −180 and
180 degrees. We train the convnets using stochastic gradient
descent with Nesterov momentum. The inital learning rate is
10−3 and we reduce it by a factor of 0.2 if the validation loss
has not improved in the last 5 iterations. The obtained results
are given in Table I. For comparison we also show the results
from [19] which are obtained using the pretrained convnets
for feature extraction and linear SVM for classification.

We can see that training only the softmax layer on top of
SqueezeNet results in poor performance. However, fine-tuned
SqueezeNet achieves the classification accuracy of nearly 89%
which is comparable to the previous state-of-the-art in spite

TABLE I
CLASSIFICATION ACCURACIES (%) ON AID DATASET.

Model Accuracy
SqueezeNet softmax 61.63± 2.51
SqueezeNet fine-tune 88.85± 0.83
ResNet softmax 90.62± 0.56
ResNet fine-tune 94.23± 0.34
CaffeNet [19] 89.53± 0.31
VGG VD 16 [19] 89.64± 0.36
GoogLeNet [19] 86.39± 0.55

of the much lower number of parameters in SqueezeNet com-
pared to the other convnets. An interesting result is obtained
by training only the topmost softmax layer of ResNet. This
strategy achieves classification accuracy of almost 90%, which
is better than the previous best result. Even better result is
obtained by fine-tuning ResNet and it outperforms the previous
best result obtained using VGG VD 16 for nearly 5%.

B. Feature Extraction Using Convnets

In the second set of experiments we use pretrained and fine-
tuned convnets as feature extractors and subsequently classify
the images using SVM. In order to get better insight into
the quality of the features that can be extracted from various
layers we adopted the following strategies. In SqueezeNet we
extract features from the output of each Fire module, as well
as from the outputs of the first and last convolutional layers,
while in ResNet we extract features from the output of each
group of residual blocks with the same number of filters. In all
cases features are extracted using global spatial pooling of the
activations of the specific layer. Therefore, the dimensionality
of the feature vector is equal to the number of feature maps
in that layer.

We randomly choose 50% of images for training the SVM
classifiers and we test on the remaining 50%. The experiments
are repeated 10 times with different random training/test splits
and the classification accuracies are averaged.

The obtained results are given in Fig. 3 and 4. As expected,
the classification accuracies obtained using the features ex-
tracted from fine-tuned convnets are higher than in the case
of convnets trained on ImageNet only. Furthermore, in the
case of fine-tuned convnets the accuracies keep increasing
when features are extracted from higher layers. On the other
hand, when convnet trained only on ImageNet is used, the
classifier performs best for intermediate layers, and its per-
formance drops as we move towards the higher layers. This
behavior is a consequence of specialization of the filters in
higher layers for detection of higher-level features specific to
ImageNet. Since the images in ImageNet are very different
from remote sensing images, those higher-level features are not
discriminative enough for remote sensing image classification.
When fine-tuned convnets are used, the discrimination power
of the features increases as we move towards the higher layers
of the convnet.

Finally, we examine whether the convnets fine-tuned on
one dataset of remote sensing images will be useful for
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Fig. 3. The obtained classification accuracies on AID dataset using
SqueezeNet for feature extraction and linear SVM for classification.
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Fig. 4. The obtained classification accuracies on AID dataset using ResNet
for feature extraction and linear SVM for classification.

classification of images from the different dataset without
further fine-tuning, i.e. are features extracted using convnets
robust to covariate shift caused by variations in remote sensing
images? To this end we extract features for images from the
UCM dataset using convnets fine-tuned on AID dataset. For
comparison purposes we also extract features using convnets
trained on ImageNet only. As a classifier we again use linear
SVM. The obtained results are shown in Fig. 5 and 6.

These results show that, when SqueezeNet is used the
classification accuracies in both ImageNet pretrained and AID
fine-tuned convnets are similar up to the output of the Fire7
module. This suggests that the features extracted using the
modules before and including the Fire7 contain important dis-
criminative cues for classification of images in UCM dataset.
Having in mind that the images in ImageNet dataset are very
different from remote sensing images it can be concluded
that these are generic visual features and not specialized
for a specific classification task. The classification accuracies
obtained using features extracted from the modules after the
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Fig. 5. The obtained classification accuracies on UCM dataset using
SqueezeNet for feature extraction and linear SVM for classification.
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Fig. 6. The obtained classification accuracies on UCM dataset using ResNet
for feature extraction and linear SVM for classification.

Fire7 result in lower classification accuracies. This is more
pronounced in the case of the convnet pretrained on ImageNet
than in the case of the convnet fine-tuned on AID because the
upper layers of the latter convnet still extract features which
are more suitable for remote sensing image classification.

The classification accuracies obtained using features ex-
tracted from ResNet greatly differ in the cases when only the
ImageNet pretrained network and the network fine-tuned on
AID are used. It seems that residual blocks in any layer do not
produce features which are universal enough to be transferred
from object recognition to remote sensing image classification.
In addition, the classification accuracy increases up to the
fourth group of residual modules, and decreases afterwards.
The reason is, again, the specialization of feature extractors
for a task considerably different from remote sensing image
classification. On the other hand, when the network is fine-
tuned on AID dataset, the classification accuracies are higher
for more than 30%. Furthermore, the classification accuracy
increases after each group of residual blocks because the filter
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACIES ON UCM DATASET.

Model Accuracy
SqueezeNet pretrained features 92.90± 0.65
SqueezeNet fine-tuned features 92.24± 1.12
ResNet fine-tuned features 96.95± 0.41
GoogLeNet fine-tuned features [6] 99.47± 0.50
GoogLeNet fine-tuned [6] 97.78± 0.97

TABLE III
ELAPSED TIMES FOR FINE-TUNING AND CLASSIFICATION PHASES.

Convnet Epochs Fine-tuning (epoch) Classification (image)
SqueezeNet 174 40.81 s 0.8 ms
ResNet 74 52.77 s 10 ms

weights are fine-tuned to extract features which are relevant
to remote sensing image classification.

In Table II we compare the best results on UCM with the
results from the literature. It can be seen that the performance
of descriptors extracted using the fine-tuned ResNet is very
close to the state-of-the-art (GoogLeNet for descriptor extrac-
tion fine-tuned on UCM) in spite of the fact that we did not
fine-tuned our networks on UCM.

Finally, in Table III we report timings for fine-tuning and
classification phases for both convnet topologies, as well as
the total number of epochs for fine-tuning. We can see that
classification is very fast which opens up the possibility for
various practical applications.

V. CONCLUSION

In this paper we evaluated modern convnets architectures
on the task of remote sensing image classification. We exper-
imentally showed that fine-tuned convnets can be effectively
used both as classifiers as well as feature extractors. Using
fine-tuned SqueezeNet we managed to obtain the classification
accuracy of 88.85% which is close to the state-of-the-art
but with significantly reduced number of parameters, while
with fine-tuned ResNet we obtained classification accuracy of
94.23% which is the new best result on AID dataset.

The obtained results indicate that when ImageNet pretrained
convnets without fine-tuning are used for feature extraction
from remote sensing images it is better to use the activations of
lower convolutional layers in order to achieve better generality
of the extracted features. On the other hand, when fine-tuned
convnets are used for feature extraction classification accuracy
steadily improves when features are extracted from higher
layers. Finally, we showed that convnets fine-tuned on AID
dataset can be used for feature extraction from UCM and
obtain near state-of-the-art results without further fine-tuning.
This means that the network fine-tuned using remote sensing
images is able to produce features useful for classification
of remote sensing images from different datasets in spite of
variations in sensors, resolution and imaging conditions.
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