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Abstract—Convolutional neural networks (convnets) have
shown excellent results in various image classification tasks.
Part of the success can be attributed to good image repre-
sentations that are extracted using convolutional layers of
the network. In this paper we consider convnets from the
perspective of feature extraction for remote sensing image
classification. We analyze the impact of convolutional feature
extraction as well as the role of feature learning on the ability
of features to discriminate between land cover classes. The
quantitative analysis is based on measuring both classification
accuracy and discriminative ability of features. For the latter
we use Fisher discriminant analysis and show that features
extracted using convolutional layers with random weights
have significant discriminative ability and result in a reason-
able baseline for remote sensing image classification, which
suggests that convolutional feature extraction itself is an
important ingredient of feature extraction in convnets. Using
learned convnets for feature extraction further improves
discriminative ability of features.

Keywords—Feature learning, Fisher discriminant analysis,
convolutional neural networks, remote sensing image classi-
fication.

I. INTRODUCTION

Convolutional neural networks (convnets) have enabled
significant breakthroughs in various image classification
tasks and remote sensing image classification is not an ex-
ception to this trend [1], [2]. Traditionally, neural networks
have been considered black boxes and trained end-to-end
for a specific classification task. This has been one of the
reasons for their success, because image representations
and classifiers are learned in such a way that the most dis-
criminative features are used for classification. However,
at the same time it is also the main drawback of convnets
because for successful end-to-end training we need large
labeled datasets. Unfortunately, in remote sensing, data
labeling is expensive and large labeled datasets are scarce.

Two results have made possible to circumvent the lack
of training data and motivated the change in perspective
on convnets. The first one is the observation that the
outputs of a neural network with random weights can be
used to train a classifier which will result in surprisingly
good classification accuracy [3]–[6]. The second one is an
interesting property of convnets that it is possible to obtain
state-of-the-art classification accuracy on a given task by
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using a convnet trained on a completely unrelated task and
only training the last layer for the task at hand [7]. This
has also been successfully used in remote sensing image
classification [8]–[11].

As a consequence of the above findings, we can regard
a convnet as having two parts: (i) a feature extraction part,
and (ii) a classifier part. This division is very loose and
there is no strict rule which layers of the network constitute
feature extraction and classifier parts. For the purpose of
this paper we will consider the last layer of the network to
be a classifier, and all the preceding layers to be a feature
extractor.

In [12] the authors argue that features are the key
ingredient to successful remote sensing image classifica-
tion and propose a classifier which uses 22 hand-crafted
features selected from a larger set of 150 features, based
on distribution separability criterion. As a classifier a fully
connected neural network is used. Trying to understand
the reasons behind the obtained results, the authors show
that the used features improve the separability of class-
conditional distributions.

The main goal of this paper is to analyze convnets from
the perspective of feature extraction for remote sensing
image classification. To this end we evaluate the features
obtained using convnets with one and two convolutional
layers. We train and evaluate a simple softmax classifier
using the obtained features and report classification accu-
racies on two datasets of satellite images. Our intention
in this paper is not to obtain state-of-the-art results on
the used datasets but rather to get better insight into
the features extracted using a convnet. To this end we
analyze the obtained features by assessing separability of
the land cover classes in the feature space. As a measure
of separability we use the ratio of between-class to within-
class scatter in the feature subspace obtained using Fisher
linear discriminant [13]. Similar criterion for comparing
features was used in [14] where Fisher criterion was used
to quantify the capability of a feature to discriminate
between two textures, i.e. texture classes. In this paper we
extend this approach to arbitrary number of classes. The
main advantage of this approach is that the features are
evaluated solely on the basis of their ability to discriminate
between the classes, ruling out the influence of the specific
classifier.

Since even neural networks with random weights can
produce features that result in good classification accura-
cies, it follows that convolutional feature extraction per se
plays an important role in obtaining a discriminative image
representation. We examine this assumption by computing
the Fisher criterion for features extracted using convo-
lutional layers with random weights. Next, the impact



of learning is evaluated using convolutional layers from
networks trained on the same or different classification
problems.

The main contributions of this paper are:
• Evaluation of convnets for feature extraction in re-

mote sensing image classification,
• Analysis of the discriminative ability of the obtained

features regardless of the used classifier,
• Analysis of the impact of convolutional feature ex-

traction on the ability of features to discriminate
between land cover classes,

• Analysis of the role of learning in feature extraction.
The rest of the paper is organized in the following

manner. In Section II basics of convnets are reviewed. The
similarity of modern architectures for feature extraction
and convnets is discussed in Section III. The datasets and
methods used for the analysis are presented in Section IV.
The experimental results are given in Section V. Sec-
tion VI concludes the paper.

II. CONVOLUTIONAL NEURAL NETWORKS

Convnets have arisen in the area of image classification
and improved state-of-the-art in virtually every task they
have been applied to. The main idea behind convnets
is that images have pronounced local structure and joint
distributions of spatially close pixels are more important
than those of spatially distant ones. This fact has been
confirmed by the discovery of local receptive fields of
the neurons in mammalian visual cortex and leveraged in
image classification through the use of Gabor filters, as
well as local features such as SIFT, HOG, and LBP, for
image description.

The output of a processing element in a fully connected
layer depends on the values of all the pixels in an image.
This means that the network has to learn the local structure
of the image in order to use it effectively for image
classification. Although it should be possible in general,
it is very inefficient, so convnets explicitly encode local
image structure by using a network topology in which a
neuron in the hidden layer is connected only to the input
neurons corresponding to spatially close pixels. The set of
input neurons connected to a hidden neuron determines its
receptive field, which is essentially a window in the input
image. Each hidden neuron corresponds to a position of
the window in the input image. An important ingredient
of convnets is weight sharing, i.e. all hidden neurons use
the same set of weights, since the same visual features
appear in different positions in the input image. In this
way the number of parameters is reduced compared to
fully connected networks, which makes training easier and
improves generalization. So, the hidden neurons act as
feature detectors in various image locations. In essence,
the input image is convolved with a filter defined by the
set of weights of the neurons in a hidden layer and a
feature map is obtained.

More formally, let x ∈ Rn×n denotes an input image
and w ∈ Rk×k denotes a convolutional kernel then the
feature map is obtained as

a = f (w ∗ x+ b) , (1)

where b ∈ R is a bias term and f is a nonlinear activation
function. Many activation functions have been proposed,
but the most used one at the moment is rectified linear
function (ReLU)

a = f (z) = max (0, z) . (2)

Image classification is performed on the basis of ex-
istence or absence of multiple features. Therefore, it
is necessary to have multiple feature detectors. This is
accomplished by using multiple filters each computing
a feature maps of the form (1). Therefore, a hidden
layer contains multiple feature maps and is referred to as
convolutional layer.

Besides convolutional layers, convnets also contain
pooling layers. They are commonly placed after con-
volutional layers. Neurons in pooling layers also have
small receptive fields and its outputs are typically average
(average-pooling or sum-pooling) or maximum values
(max-pooling) of the activations of the neurons in the
corresponding receptive field. A pooling layer discards the
information about exact object positions and introduces a
degree of invariance to small translations. Max-pooling
layers are prevalent in modern convnets.

Convnets usually contain multiple convolutional and
pooling layers followed by several fully connected layers.
If a convnet is used for classification, the output layer is
usually a softmax layer.

III. CONVNETS AS FEATURE EXTRACTORS

Feature extraction for image classification today typi-
cally proceeds through a few stages as shown in Fig. 1.
First, images are filtered using a filter bank. The filters can
be either hand-crafted or learned using a variety of unsu-
pervised and supervised approaches. After the filtering the
obtained filter responses are encoded and finally pooled
in order to obtain a discriminative image representation
which is fed to a classifier.

For example, in the original bag-of-words (BoW) frame-
work, computation of dense SIFT descriptors can be
regarded as image filtering, because descriptors are com-
puted for image patches sampled using a sliding window.
Filter responses are then encoded against a codebook
obtained by k-means clustering of the descriptors from the
training set. Finally, the image representation is obtained
by computing a histogram of codeword occurrences, which
is essentially sum-pooling of one-hot codes. This frame-
work has undergone many modifications which improved
classification performance. For example, instead of k-
means clustering and one-hot encoding, sparse coding has
been introduced, max-pooling is used instead of sum-
pooling, and unsupervisedly learned filters have shown
performance comparable or better to hand-crafted SIFT
descriptors.

From this standpoint, convolutional and pooling layers
in a convnet can be regarded as a feature extractor and final
fully connected layers as a classifier. More specifically, a
convolutional layer is basically a filter bank and nonlinear
activation function is equivalent to encoding of filter
responses. Finally, pooling layers, as the name suggests,
perform pooling of the obtained codes. The most striking
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Fig. 1. Stages of convolutional feature extraction for image classification.

difference to the traditional feature extraction schemes
is that filter weights, along with a classifier, are trained
using a supervised learning algorithm. In this way image
representations more adapted to the classification task at
hand are obtained. As a result, convnets improved state-of-
the-art results in virtually every image classification task
they had been applied to.

In this standard setting, both the filters and the clas-
sifier parts of a convnet are jointly traiend. However, an
interesting property of convnets has been observed which
enforced the perspective that a convnet contains a feature
extractor and a classifier. In various classification tasks it
has been observed that convnets trained for completely
unrelated tasks can yield state-of-the-art or better results
with minimal fine tuning [7]. Fine tuning can, for example,
mean learning the weights of the final softmax layer,
while the weights of convolutional layers remain frozen.
Furthermore, it has been also shown that the outputs of the
last but one layer of a convnet can be effectively classified
using SVM. In both the above scenarios, filter weights
remain unchanged and only classifier is trained, which
suggests that feature extraction is the task performed by
convolutional layers.

As far as remote sensing imagery is concerned, the
situation is even more interesting. Until recently, there
were no labeled datasets of remote sensing images large
enough for training of convnets. Nevertheless, in [8] it was
shown that convnets pretrained on ImageNet can be used
for classification of remote sensing images. Furthermore,
in [15] it was shown that pretrained convnets can be used
for feature extraction from remote sensing images and,

in conjunction with SVM, yield competitive results, even
without fine tuning. This result is remarkable having in
mind large differences between the contents of ImageNet
and remote sensing images.

IV. MATERIAL AND METHODS

In this paper we use SAT-4 and SAT-6 datasets [12].
The images in both datasets are sampled from the National
Agriculture Imagery Program (NAIP) dataset, which con-
sists of a total of 330,000 scenes spanning the whole of the
Continental United States. These are the largest publicly
available labeled datasets of remote sensing images. They
contain images of size 28×28 pixels with spatial resolution
of 1 meter and 4 spectral bands: red, green, blue and near
infrared. SAT-4 contains 400,000 training and 100,000 test
images manually classified into four land cover classes:
barren land, trees, grassland, and a class that contains all
other land cover classes different from the above three.
SAT-6 contains 324,000 training and 81,000 test images
manually classified into six land cover classes: barren land,
trees, grassland, roads, buildings and water bodies.

For feature extraction we use convnets with one or two
convolutional layers followed by pooling layers. Filters in
the convolutional layers are 3 × 3 pixels, and the stride
is equal to 1. We use max-pooling on non-overlapping
regions of size 2×2 pixels. The filter weights are randomly
initialized as described in [16]. We analyze the features
obtained from both the convnets with random weights as
well as from the convnets trained using backpropagation.

As a classifier, a single softmax layer is used. When
random weights are used, only the classifier is trained,
while the weights of the convolutional layers remain
frozen. When the features are extracted using the trained
convnet, we consider two scenarios. In the first scenario
the convnet is trained on the same dataset that will be used
for classification and the convolutional layers as well as the
softmax layer are jointly trained using backpropagation.
On the other hand, in the second scenario a different
dataset is used for training, the weights of convolutional
layers are then frozen, and the final classifier is trained,
similarly to the case with random weights.

We train all convnets using stochastic gradient descent
with Nesterov momentum. During the learning we monitor
the validation error of the convnet and reduce the learning
rate by half if the validation error did not drop for ten
consecutive epochs. Following the reduction the learning
rate is not reduced again for eight epochs. The learning
is terminated if the validation error did not drop for 30
consecutive epochs or if the learning rate was reduced by
a factor of more than 1000 in total.

The classifier is implemented using Theano and Lasagne
and the experiments are performed on TITAN X GPU with
12 GB of RAM. In the experiments, we vary the number
of filters and report the classification accuracies on the
validation set.

In order to get better insight into the reasons behind the
obtained classification accuracies, we further analyze the
obtained features using Fisher criterion to evaluate the sep-
arability of classes in the feature space. The feature vectors
for images from a single class form a cluster in the feature



space. The better the separability of the clusters, the more
the features are suitable for discrimination between the
classes. The separability of the clusters depends both on
their distance and compactness and can be assessed using
Fisher discriminant analysis.

Given a set of d-dimensional samples x1,x2, . . . ,xn,
belonging to c classes, Fisher discriminant analysis finds
their projections to (c− 1)-dimensional space

yk = WTxk, k = 1, 2, . . . , n, (3)

where W ∈ Rd×(c−1) is the projection matrix obtained
by maximizing the Fisher criterion which is the ratio
of the between-class scatter and within-class scatter of
the projected samples y1,y2, . . . ,yn. We define between-
class scatter matrix

SB =

c∑
i=1

ni (m−mi) (m−mi)
T
, (4)

where ni is the number of samples in the i-th class, m is
the mean vector of all samples

m =
1

n

n∑
k=1

yk, (5)

and mi is the mean vector of the set of feature vectors
from the i-th class, Yi. Between-class scatter matrix is a
measure of the distances between the clusters. We also
define within-class scatter matrix

SW =

c∑
i=1

∑
y∈Yi

(y −mi) (y −mi)
T
, (6)

which is a measure of cluster compactness. Finally, total
scatter matrix is defined as

S = SB + SW . (7)

The criterion function now has the following form [13]

J = tr
(
S−1SB

)
, (8)

where tr (·) is trace of a matrix. Since the trace is
the sum of the eigenvalues of a matrix it measures the
scattering volume in the direction of the eigenvectors. By
maximizing (8) we tend to increase the between-class
scatter and to decrease the within-class scatter. This is
roughly equivalent to increasing the distance between the
classes and, simultaneously, increasing their compactness.
Therefore the larger the value of the Fisher criterion, the
better the separability of the classes. The drawback of this
approach is that the optimal solution is achieved only when
the underlying distribution is Gaussian. However, in other
cases the value of the Fisher criterion can still be regarded
as an approximation of the class separability.

Fisher criterion was used in [14] for assessing the
ability of Gabor-based features for discrimination between
two textures, which is, essentially, a binary classification
problem. In [12], distribution separability criterion (DSC)
is used for measuring the discriminative power of features.
DSC is computed as

DS =
‖δmean‖
δσ

, (9)

softmax

pool 2x2

conv 3x3
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pool 2x2

conv 3x3

ReLU

input image
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Fig. 2. An example of the convnet with two convolutional layers and
without fully connected layers.

where ‖δmean‖ is the mean of distances between means
and δσ is the mean of standard deviations of class condi-
tional distributions. It can be seen that DSC is very similar
to the Fisher criterion in the two-classes case. In this paper
we consider an arbitrary number of classes. Therefore, we
consider the Fisher criterion (8) to be a generalization of
DSC.

V. EXPERIMENTAL RESULTS

The goal of the experiments in this paper is to analyze
how feature extraction using convolutional layers influ-
ences classification of remote sensing images into land
cover classes. To this end we use convnets with one and
two convolutional layers and no fully connected layers.
When one convolutional layer is used, the number of units
is chosen from the set {8, 16, 32, 64}. With two convolu-
tional layers we evaluate two cases: (i) the number of units
in the first layer is fixed to 8 and the number of units in the
second layer is chosen from the set {8, 16, 32, 64}, and (ii)
the number of units in the first layer is fixed to 32 and the
number of units in the second layer is chosen from the set
{32, 64}. Each convolutional layer is followed by a max-
pooling layer, as described in Sec. IV. The topology of a
convnet with two convolutional layers and without fully
connected layers used in this paper is shown in Fig. 2.

When convnets are used for feature extraction it is
important to assess both the importance of convolutional
feature extraction as well as that of learning a set of filters.
Therefore, we first performed experiments with random
weights, and trained only the final softmax classifier. Then
we trained the complete convnet and used its convolutional
layers for feature extraction. Finally, we used the convo-
lutional layers trained on SAT-4 for feature extraction in
SAT-6 and vice versa. For both SAT-4 and SAT-6 we held
100,000 images from the training set for validation, and
trained convnets on the rest.



TABLE I
VALIDATION ACCURACIES (%) ON SAT-4 DATASET OBTAINED USING

FEATURES COMPUTED USING CONVNETS WITH ONE AND TWO
CONVOLUTIONAL LAYERS AND VARYING NUMBER OF

CONVOLUTIONAL UNITS.

Architecture Accuracy
(random)

Accuracy
(trained SAT-4)

Accuracy
(trained SAT-6)

8c-mp 81.67 98.20 91.69
16c-mp 89.03 98.55 96.39
32c-mp 94.33 98.87 96.15
64c-mp 96.82 99.19 98.40
8c-mp-8c-mp 75.83 98.11 93.29
8c-mp-16c-mp 75.93 98.65 95.10
8c-mp-32c-mp 86.55 99.09 97.55
8c-mp-64c-mp 92.33 99.30 98.00
32c-mp-32c-mp 90.00 99.52 97.62
32c-mp-64c-mp 93.91 99.51 98.51

TABLE II
VALIDATION ACCURACIES (%) ON SAT-6 DATASET OBTAINED USING

FEATURES COMPUTED USING CONVNETS WITH ONE AND TWO
CONVOLUTIONAL LAYERS AND VARYING NUMBER OF

CONVOLUTIONAL UNITS.

Architecture Accuracy
(random)

Accuracy
(trained SAT-6)

Accuracy
(trained SAT-4)

8c-mp 96.36 98.50 98.64
16c-mp 97.20 98.65 99.04
32c-mp 97.70 98.89 99.15
64c-mp 98.29 99.21 99.30
8c-mp-8c-mp 94.25 97.62 98.95
8c-mp-16c-mp 96.01 98.39 99.01
8c-mp-32c-mp 97.08 98.82 99.29
8c-mp-64c-mp 97.56 99.28 99.35
32c-mp-32c-mp 97.14 99.23 99.38
32c-mp-64c-mp 97.79 99.40 99.38

The validation accuracies obtained on SAT-4 dataset
are shown in Table I. Several conclusions can be drawn.
First, the features extracted using one convolutional layer
with random weights make a reasonable baseline for
classification of SAT-4 images. This is in line with the
findings of [4] and [5]. Furthermore, the classification
accuracy increases when more filters are used and the best
result is obtained using 64 convolutional units followed
by max-pooling. However, adding another convolutional
layer with random weights does not necessarily improve
the results, although increasing the number of filters in
both layers again improves the classification accuracy.

Training the convnet for feature extraction improves
the results considerably. In this case also, increasing the
number of filters improves the classification accuracy.
Most notably, adding another layer in this case also
improves the results which suggests that the network learns
a hierarchical representation of the data. We also tested
the features extracted using the convolutional layers from
the network trained on SAT-6 and the obtained results
are close to those obtained using the convnet trained on
SAT-4. Although the used datasets are very similar they
contain different numbers of classes, which confirms that
the extracted features are universal to some extent.

The validation accuracies obtained on SAT-6 dataset
are given in Table II. Again, the similar conclusions
can be drawn. In addition, in this case, the accuracies
obtained with random filters are even closer to those
obtained with learned filters. When filters learned on SAT-
4 are considered, we can observe that the classification

TABLE III
CLASS SEPARABILITY ON SAT-4 DATASET COMPUTED USING FISHER

CRITERION VS. FEATURE DIMENSIONALITY FOR FEATURES
EXTRACTED USING CONVNETS WITH ONE AND TWO

CONVOLUTIONAL LAYERS AND VARYING NUMBER OF
CONVOLUTIONAL UNITS.

Architecture J
(random)

J
(trained SAT-4)

J
(trained SAT-6)

raw pixels 1.07
8c-mp 1.28 1.89 1.52
16c-mp 1.67 2.11 2.10
32c-mp 1.99 2.42 2.28
64c-mp 2.28 2.63 2.52
8c-mp-8c-mp 1.07 2.27 1.46
8c-mp-16c-mp 1.46 2.43 2.12
8c-mp-32c-mp 1.59 2.48 2.24
8c-mp-64c-mp 1.88 2.58 2.45
32c-mp-32c-mp 1.84 2.56 2.26
32c-mp-64c-mp 2.06 2.58 2.47

TABLE IV
CLASS SEPARABILITY ON SAT-6 DATASET COMPUTED USING FISHER

CRITERION VS. FEATURE DIMENSIONALITY FOR FEATURES
EXTRACTED USING CONVNETS WITH ONE AND TWO

CONVOLUTIONAL LAYERS AND VARYING NUMBER OF
CONVOLUTIONAL UNITS.

Architecture J
(random)

J
(trained SAT-6)

J
(trained SAT-4)

raw pixels 2.22
8c-mp 2.44 3.00 2.95
16c-mp 3.26 3.50 3.53
32c-mp 3.68 3.98 3.74
64c-mp 4.10 4.40 4.38
8c-mp-8c-mp 2.21 2.84 3.16
8c-mp-16c-mp 2.57 3.62 3.42
8c-mp-32c-mp 3.18 4.08 3.86
8c-mp-64c-mp 3.36 4.34 4.30
32c-mp-32c-mp 3.35 4.10 3.94
32c-mp-64c-mp 3.59 4.39 4.23

accuracies are even better than the accuracies obtained
using filters learned on SAT-6, which further supports our
assumption about the universality of learned features.

In order to get better insight into the features extracted
using convnets we computed class separability measures
(8) for all the cases discussed above. The results for SAT-4
are given in Table III, where the values of Fisher criterion
are given for the tested convnets. When convnets with
random weights are considered the reported values are
obtained by averaging over five runs. We can see that, in
all cases, the class separability computed using extracted
features is better than when raw pixel values are used.
Therefore, convolutional feature extraction improves the
class separability thus making it is easier to find decision
boundaries in the feature space. Adding more filters, even
with random weights, improves class separability. On the
other hand, adding more layers with random weights does
not improve the class separability. Finally, training further
improves separability of classes, which is consistent with
the increase in accuracy. Unfortunately, it can be noticed
that the class separabilities for random feature filters can
be higher than the ones for the learned ones, although this
is not the case with the corresponding classification accu-
racies. We believe that this is due to non-Gaussianity of
the data, which makes Fisher criterion just an approximate
measure of class separability. Similar conclusions can be
made for the results for SAT-6 given in Table IV.



TABLE V
COMPARISON OF THE CLASSIFICATION ACCURACIES (%) ON THE

TEST SET FOR SAT-4 AND SAT-6.

Model SAT-4 SAT-6
DeepSat [12] 97.95 93.92
VGG [2] 99.98 99.98
64c-mp (random) 96.87 98.00
32c-mp-32c-mp (trained) 99.52 99.40
32c-mp-64c-mp (trained) 99.54 99.44

Although the evaluated convnet models were not de-
signed to achieve state-of-the-art classification accuracy it
is interesting to compare the obtained results to DeepSat
[12] and state-of-the-art convnets [2]. To this end, in
Table V the classification accuracies on the test set are
given. We can see that in this case there is no need
for unsupervised pretraining and even simple two-layered
models examined in this paper can produce better results
than the hand-crafted features.

VI. CONCLUSION

In this paper we examine the convnets from the perspec-
tive of feature extraction. On two datasets of satellite im-
ages we show that even convolutional layers with random
weights can extract features which result in reasonable
classification accuracies. By using convolutional layers
from trained convnets classification accuracies increase.
It is important to note that the convnet does not have to
be trained for the same classification task and the results
will still be close to the results obtained with the convnet
trained on the same task. This suggests that the learned
feature filters are universal to some extent.

We also analyzed the obtained features from the stand-
point of class separability. To this end we used Fisher
criterion and computed its value for features obtained
using random as well as learned filters. From the results
we conclude that convolutional feature extraction increases
class separability compared to raw image pixels. Learning
further improves the value of Fisher criterion. This essen-
tially means that learned filters extract features in such a
way that the distances between the samples from the same
class will be smaller while, at the same time, the classes
will be more distant in the feature space.

The obtained results show that there is no need for unsu-
pervised pretraining if enough labeled images are available
for training. Nevertheless, unsupervised pretraining might
still be useful in cases with small number of labeled
examples. Two interesting directions for future work arise
from this research. The first one is the investigation of the
universality of learned feature filters in the presence of
different sources of variability in remote sensing images,

and the other is concerned with avoiding non-Gaussianity
of data and adapting Fisher discriminant analysis to work
with features extracted using convnets.
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