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Abstract—There is an increasing need for algorithms for auto-
matic analysis of remote sensing images and in this paper we address
the problem of semantic classification of aerial images. For the task
at hand we propose and evaluate local structural texture descriptor
and similarity measure. Nearest neighbor classifier based on the
proposed descriptor and similarity measure, as well as image-to-
class similarity, improves classification rates over the state-of-the-art
on two datasets of aerial images. We evaluate the design choices
and show that rich subband statistics, perceptually-based structural
texture similarity measure and image-to-class similarity all contribute
to the good performance of our classifier.

Keywords—Aerial image classification, Structural texture similar-
ity, Local image descriptors

I. INTRODUCTION

One of the most important problems in aerial image analysis
is semantic classification. The ultimate goal of semantic classi-
fication of aerial images is to assign a class from a predefined
set, e.g. urban, industry, forest, etc., to each image pixel.
Since aerial images are frequently multispectral and of high
resolution, in order to reduce computational complexity, this
problem is usually approached by dividing the aerial image
into tiles, and assigning a class from a predefined set to each
tile. Thus obtained classification of image tiles can then be
used in content-based image retrieval or for constructing a
thematic map, for example.

There has been a long history of using computer vision
techniques for classification of aerial images. Some efforts are
part of content-based aerial image retrieval systems, e.g. in [1]
the authors use Gabor descriptors and self-organizing maps
for classification of aerial images in order to enable efficient
content-based retrieval from the database of aerial images.
Parulekar et al. [2] classify satellite images into four semantic
categories in order to enable fast and accurate browsing of the
image database.

In [3] target detection in aerial images is performed. How-
ever, images are only classified into two classes, based on
whether they contain the target object or not. Multi-class
classification was investigated in [4] where aerial images are
classified based on color, texture and structure features. In a
more recent work [5], Ozdemir and Aksoy use bag-of-words
model and frequent subgraph mining to construct higher level
features for satellite image classification.

Various image descriptors and classification algorithms for
aerial image classification are also actively evaluated. In [6]
SIFT descriptors and Gabor texture descriptors are compared,
as well as Gist descriptors and Gabor texture descriptors in

[7]. In [8] a large-scale evaluation of eight various texture and
color descriptors was performed on a new, currently the largest
publicly available, dataset of aerial images.

In this paper we evaluate structural texture similarity mea-
sure, originally proposed in [9] and further developed in
[10], on the task of aerial image classification. To the best
of our knowledge, this is the first large scale evaluation of
structural texture similarity measure on the task of aerial
image classification. We also propose modifications which
make structural texture similarity better suited for aerial image
classification.

Structural texture similarity compares texture images us-
ing 7 × 7-pixels sliding windows at corresponding locations.
Comparing only windows at corresponding locations limits the
spatial layout of images. To avoid this drawback, in Section
II, we regard images as unordered sets of windows, and allow
for comparing of windows at different spatial locations. We
accomplish this by introducing local image descriptors, which
use larger windows at more sparsely distributed locations.

At the moment, learning-based, parametric classifiers pre-
dominate aerial image classification tasks [4], [5], [6], [7],
[8]. However, nearest neighbor (NN) classifier has several
advantages over learning-based classifiers: (i) allows a large
number of classes, as well as easy adding of new classes and
labeled examples, (ii) requires no training phase, and (iii) has
no problems with overfitting. Inspired by the results from [11]
we chose nearest neighbor classifier based on image-to-class
similarity, as described in Section III.

We perform evaluations on two publicly available datasets,
already used in the literature on the subject [7], [8]. In Section
IV we give details about the performed experiments and
compare the classification accuracies with the results from the
literature. It is worth noting that the dataset used in [8] is the
largest dataset that has been used for aerial image classification
to date. We show that, for both datasets, our results improve
state-of-the-art.

II. LOCAL STRUCTURAL TEXTURE SIMILARITY
DESCRIPTOR

Structural texture similarity was originally proposed in [9]
and further developed in [10]. In order to compute structural
texture similarity for two texture images, each image is first
convolved by a complex steerable filter bank and for each
7 × 7-pixels sliding window in each subband the following
subband-coefficient statistics are computed: subband means,
standard deviations, autocorrelation coefficients for one pixel



displacements along horizontal and vertical axes, as well as
cross-correlations between subbands. The similarity of these
two textures is then computed by comparing the subband
statistics on corresponding sliding windows, i.e. the windows
at the same locations in images.

A drawback of this approach is its sensitivity to changes in
the spatial layouts of images. This is useful in natural scene
classification where the spatial layout is a strong cue for clas-
sification [12]. On the other hand, it was shown that absolute
spatial layout taken into account via spatial pyramid kernel
[8] and Gist descriptors [7] does not improve classification
accuracy for remote sensed images. Consequently, we do not
consider the absolute spatial layout as a useful cue for remote
sensed image classification.

In order to avoid these drawbacks and still make use
of the descriptive ability of structural texture representation
we decided to derive local image descriptors from it. Local
image descriptors are very popular in scene classification
and object recognition [13]. Some popular local descriptors
were also evaluated in the context of remote sensed image
classification in [6] and [8]. Therefore, we compute descriptors
for windows on a regular grid and consider an image as a bag
of descriptors, without paying attention to their absolute spatial
location. Compared to the originally proposed descriptor, we
dropped the autocorrelation terms used in [10] because of their
sensitivity to rotation, we use larger window sizes, and we do
not restrict the window size to 7 × 7 pixels. To the best of
our knowledge this is the first attempt to use structural texture
descriptors as local image descriptors.

Computation of structural texture descriptors starts with
convolving the input image with a complex steerable fil-
ter bank at S scales and K orientations, resulting in SK
subbands. Let Wx

k denotes the coefficients of the subband
k = 1, . . . , SK, in the window x. For each window x the
following statistics are computed:

• Means of subband coefficient magnitudes

µx
k = E {|Wx

k |} (1)

• Standard deviations of subband coefficient magnitudes

σx
k = E

{
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k | − µx
k)

2
}
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• Cross-correlation coefficients between magnitudes of co-
efficients in subbands k and l, at the same scale, but
different orientations, as well as at the same orientation
but different scales

ρxkl =
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k) (|Wx
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kσ

x
l

, k ̸= l. (3)

In the above equations the expected values are computed as
empirical averages over subband windows.

These statistics are collected in a local descriptor. In the
remainder of this paper, we will refer to this descriptor as
structural texture (ST) descriptor. ST descriptor is related to
Gabor texture descriptor [14], which uses means and standard
deviations of subbands globally, and to Gist descriptor [12],
which uses means of subband blocks on a 4× 4 grid.

Structural texture similarity (STSIM) between two windows,
x and y, represented by their ST descriptors, is computed by
averaging their similarities in all subbands,
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where lk (x,y) is the similarity of mean values
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and ck (x,y) is the similarity of standard deviations
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In equations (5) and (6) K1 and K2 are small constants
introduced for stability reasons.

The term rk (x,y) is the contribution of cross-correlation
coefficients and it is obtained by averaging similarities of all
cross-correlation coefficients as follows:

rk (x,y) =
1

Nρ

[∑
k ̸=l

(1− 0.5|ρxkl − ρykl|)
]
, (7)

where Nρ = S + K − 2 is the number of cross-correlation
coefficients for a subband block.

III. NEAREST NEIGHBOR STRUCTURAL TEXTURE
SIMILARITY CLASSIFIER

The problem of image classification, in general, consists of
assigning a test image X to a class from the predefined set
{C1, C2, . . . , Ck}. Traditionally, a nearest neighbor classifier
involves computation of similarities between the test image
and labeled images (image-to-image similarity) and classifies
the test image into the class containing the most similar labeled
image. In this paper, inspired by [11], rather than computing
image-to-image similarities we take a different approach, and
compute the image-to-class similarities between the test image
and each of the classes. We classify the test image to the class
for which this similarity measure attains its maximum.

We consider an image to be a set of windows or blocks X =
{x1, . . . ,xn}, which are represented using its ST-descriptors,
as described. If an image X belongs to a class C, we consider
that all its blocks xi belong to the same class and write xi ∈ C.
We define block-to-class similarity as

Q (x, C) = max
y∈C

Q (x,y) . (8)

Similarity of the test image X = {x1, . . . ,xn} to the class C
is Q (X, C) =

∏n
i=1 Q (xi, C). The computation of image-to-

class similarity is illustrated in Fig. 1. For each block from the
test image the most similar block in the set of labeled images
is found. The overall image-to-class similarity is the product
of individual block-to-class similarities for each of the blocks
from the test image.

Now, classification of the test image X proceeds in the
following way:
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Fig. 1. Image-to-class similarity. Block-to-class similarities are indicated on
the arrows. See text. (Best viewed in color.)

1) Calculate ST-descriptors for blocks x1, . . . ,xn of the
test image X;

2) For each block xi, i = 1, . . . , n of the test image and
for each class Cj , j = 1, . . . , k compute the similarity
Q (xi, Cj) using (8);

3) Compute image-to-class similarities between the test
image and each class Q (X, Cj) =

∏n
i=1 Q (xi, Cj) ,

j = 1, . . . , k;
4) Classify X to the class Ĉ = argmaxC Q (X, C).
The advantage of using image-to-class similarity over

image-to-image similarity for image classification can be
observed in Fig. 2, where image-to-image similarities of a
test image to a set of labeled examples from two classes are
shown. The most similar to the test image is the labeled image
belonging to the negative class, so if image-to-image similarity
had been used, the test image would have been classified
incorrectly. On the other hand, when image-to-class similarity
is used, the test image will be classified correctly, since image-
to-class similarity for the positive class is larger than for the
negative one.

IV. EXPERIMENTAL RESULTS

In order to evaluate the proposed descriptors and classifier,
we conduct experiments on two datasets of remote sensed
images: Banja Luka dataset and UC Merced dataset. These
datasets have recently been used in similar experiments in [7],
[8]. We found that in both cases our classifier advances the
state of the art. Most notably, our classifier outperforms all
the other approaches on UC Merced dataset [8], which is the
largest publicly available dataset of remote sensed images.

A. Banja Luka Dataset

For our first experiment we used Banja Luka dataset1, which
consists of 606 images of size 128× 128 pixels. The images

1Available: http://dsp.etfbl.net/aerial/
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Positive class Industry (Image-to-class similarity 0.8226)

Negative class Houses (Image-to-class similarity 0.7893)
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Fig. 2. Image-to-image similarity versus image-to-class similarity. Image-to-
image similarities between the test image and the labeled images are given on
the arrows. Using image-to-image similarity the test image would have been
classified incorrectly, but using image-to-class similarity the classification is
correct. (Best viewed in color.)

were manually classified into 6 classes: houses, cemetery,
industry, field, river, and trees.

In the feature extraction phase, we decompose each image
using both complex steerable filter bank and Gabor filter bank
at 4 scales and 6 orientations. We included Gabor filter bank
into this analysis motivated by its biological plausibility and
good performance of Gabor-based descriptors in [6] and [7].
Next we compute ST-descriptors for subband blocks on 1× 1
(which corresponds to global subband coefficients statistics),
2 × 2, and 4 × 4 grids. For color images we compute the
descriptors and similarities for individual color-components of
the RGB colorspace and average the similarities.

Since the distribution of images in the classes is very
uneven, we use half of the images from each class as labeled
images, and the other half as test images. We repeat the
experiment 10 times with different random splits of the dataset,
and average the results.

First we would like to investigate the influence of the
design choices on the performance of the nearest neighbor
structural texture similarity based (NN-STSIM) classifier. We
compare NN-STSIM classifiers based on complex steerable
filters with (a) NN-STSIM classifiers based on Gabor fil-
ters, as well as NN-classifiers using: (b) L1-norm induced
metric with ST-descriptors and image-to-class similarity, (c)



image-to-image similarity with STSIM, and (d) STSIM with
means and standard deviations of subband blocks only. For
this evaluation we use only grayscale versions of images.
The comparisons are made for different numbers of subband
blocks, and the performances are shown in Fig. 3. We can
see that the classifiers using ST-descriptors based on Gabor
filters (labeled with Gabor in Fig. 3) outperform the classifiers
based on complex steerable filters (labeled with steerable).
For this reason in the subsequent experiments we use only
Gabor filter bank. Compared to other classifier variants, we can
see that the classifiers using STSIM have consistently better
performance than those using L1-norm induced metric, which
is due to the perceptual basis of STSIM. Furthermore, classifier
benefits from richer feature statistics and the classifier with
full descriptors is always better than the classifier using only
means and standard deviations of subband blocks. Finally, we
can see that image-to-class classifier outperforms image-to-
image classifier, which is consistent with our toy example in
Fig. 2 and findings of [11].
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Fig. 3. Comparison of performances of various ST-descriptor based classi-
fiers.

We also compared our classification accuracies to the results
obtained in [7] using SVM classifier with Gabor and Gist
descriptors, and the results are given in Table I. In the table,
our classifier is labeled NN-STSIM with indicated subband
partition. In the last two rows are the results from [7].

Table I. Classification accuracies for Banja Luka dataset.

Classifier Grayscale (%) Color (%)
NN-STSIM 1× 1 84.0 86.8
NN-STSIM 2× 2 86.9 89.6
NN-STSIM 4× 4 87.3 88.3
SVM Gabor [7] 84.5 88.0
SVM Gist [7] 79.5 89.3

We can see that, for grayscale images, NN-STSIM 4 × 4
classifier has the best performance and it even slightly outper-

forms SVM-based approaches. For color images, we obtained
the best performance with NN-STSIM 2 × 2 classifier, and
again, it slightly outperforms SVMs.

Confusion matrix for color NN-STSIM 2 × 2 classifier
is given in Fig. 4. We note that confusions mainly arise
between classes which can be difficult even for humans. The
most notable examples are houses and industry versus ceme-
tery, because of rectangular structures with strong oriented
edges, and river versus field, because both have homogeneous,
smooth texture without pronounced edges. It is also important
to note that there are not many confusions between natural
(river, trees, field) and man-made classes (houses, cemetery,
industry).

Fig. 4. Confusion matrix for Banja Luka dataset.

B. UC Merced Dataset

UC Merced dataset2 consists of aerial images of 21 land-
use classes. All images are 256 × 256 pixels and in RGB
colorspace. They are manually classified into the following 21
classes: agricultural, airplane, baseball diamond, beach, build-
ings, chaparral, dense residential, forest, freeway, golf course,
harbor, intersection, medium density residential, mobile home
park, overpass, parking lot, river, runway, sparse residential,
storage tanks, and tennis courts. Each class contains 100
images, which makes this dataset the largest publicly available
dataset for remote sensed image classification.

In [8] the authors compared eight popular local and global
image descriptors with SVM classifiers on this dataset. Some-
what surprisingly, color histogram in HLS colorspace outper-
formed the other approaches, and global and local texture-
based approaches using only intensity information were pretty
much leveled.

For this dataset, we compute ST-descriptors in the same
way as for Banja Luka dataset, except that we use only Gabor
filter bank. Following the protocol in [8] we performed five-
fold cross-validation, with 4/5 of the dataset used as labeled
images and 1/5 as test images. The obtained performances

2Available: http://vision.ucmerced.edu/datasets



Table II. Classification accuracies for UC Merced dataset.

Descriptor Grayscale (%) Color (%)
NN-STSIM 1× 1 77.2 80.0
NN-STSIM 2× 2 80.9 81.4
NN-STSIM 4× 4 83.4 86.0
Gabor [8] 76.9 80.5
Bag-of-words [8] 76.8 N/A
BoW + SCK [8] 77.7 N/A
HLS histogram [8] N/A 81.2

are shown in Table II along with selected results from [8],
namely: Gabor texture descriptor, bag-of-words, bag-of-words
with spatial co-occurrence kernel (BoW + SCK) and color
histogram in HLS colorspace. We can see that NN-STSIM
2 × 2 and NN-STSIM 4 × 4 classifiers for grayscale images
outperform all the other approaches that use only intensity
information. Moreover, the performance of NN-STSIM 4 ×
4 classifier for grayscale images is better than that of HLS
histogram. From these results, it is obvious that our classifier
better utilizes intensity information than the state-of-the-art
approaches do.

Classification accuracy is further improved by including
color information, and NN-STSIM classifiers for color im-
ages consistently outperform the NN-STSIM classifiers for
grayscale images. The accuracy obtained with NN-STSIM
4 × 4 for color images is the best overall with correct
classification rate of 86%.

In Fig. 5, per-class classification rates for NN-STSIM 4×4
classifier are shown. The classes on which we obtained the
highest classification rates are: beach, chaparral, harbor, and
runway. The images in these classes have pretty much homo-
geneous texture. The lowest classification rates are obtained on
buildings and intersection, and to a certain extent on storage
tanks and tennis courts. These are the classes with large intra-
class variations.
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Fig. 5. Per-class classification rates for UC Merced dataset.

Confusion matrix for NN-STSIM 4× 4 classifier for color
images is shown in Fig. 6. The most notable confusions are
between freeway and overpass, dense residential and medium
density residential, as well as between building and storage
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Fig. 6. Confusion matrix for UC Merced dataset.

tanks. Visual similarity of these classes is high even for human
observers.

V. CONCLUSION

The main contribution of this paper is the evaluation of local
structural texture descriptors and structural texture similarity
with nearest neighbor classifier for semantic classification of
aerial images. Our experiments on two datasets show that
NN classifiers with perceptually-based local descriptors and
similarity measure, as well as image-to-class similarity have
better performance than learning-based approaches for aerial
image classification. Most notably, our classifier improves
state-of-the-art on the 21-class dataset used in [8], which
has been the largest dataset for aerial image classification to
date. It is also interesting to note that increasing the number
of categories and images causes much less degradation of
classification accuracy for NN classifier compared to learning-
based classifiers.

Besides evaluation we also proposed using structural texture
descriptor as local image descriptor in a bag-of-descriptors
fashion. We evaluated a number of design choices and showed
that using rich statistics of subband coefficients is beneficial
to classifier performance. Furthermore, since structural texture
similarity metric is perceptually-based it shows better perfor-
mance than often used L1-norm induced similarity metric.
Finally, our classifier uses image-to-class similarity which
outperforms image-to-image similarity, traditionally used in
nearest-neighbor classifiers.

The main drawback of our classifier is its computational
complexity. Traditional nearest neighbor classifiers using Lp-
norm induced metrics are made practical by means of indexing
structures, e.g. kd-trees. However, at the moment there are no
indexing structures appropriate for structural similarity metric,



and it is an attractive direction of future research. Another
possibility is to use a high-performance platform, such as
GPGPU, for the computation of STSIM.
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