Univerzitet u Banjaluci Elektrotehnički fakultet Katedra za opštu elektrotehniku Digitalna obrada slike

# Vježba 1. Uvod u korištenje MATLAB-a i Image Processing Toolboxa u obradi slike

## Image Processing toolbox

U *Image Processing toolboxu (IPT)* nalaze se funkcije specijalizovane za ulazno-izlazne operacije, prikazivanje i obradu slika. Da biste vidjeli listu svih funkcija u ovom toolboxu otkucajte help images u Matlab komandnoj liniji. Vidimo da je na raspolaganju veliki broj funkcija. Mi ćemo se u okviru laboratorijskih vježbi iz Digitalne obrade slike dotaći samo nekih. Cilj ove vježbe je upoznavanje sa načinima reprezentacije slike u memoriji računara, osnovnim funkcijama IPT za učitavanje i upisivanje slike u fajlove na disku, te funkcijama za prikazivanje slike na monitoru.

# Reprezentacija slike u memoriji

Matlab memoriše sliku kao matricu. Svakom pikselu na slici odgovara jedan element matrice. Numerička izračunavanja u MATLAB-u se obavljaju korištenjem veličina klase double, pa se i u digitalnoj obradi slike ova klasa često koristi za reprezentaciju vrijednosti piksela. U tom slučaju se svaki element pamti kao 64-bitni broj u plivajućem zarezu. Međutim, na ovaj način slike mogu zauzimati izuzetno mnogo memorije. Npr. slika dimenzija 1000x1000 piksela zahtijevala bi oko 8 megabajta prostora. Međutim, u praksi je zadovoljavajuća i grublja kvantizacija vrijednosti piksela pa se često koriste 8bitne i 16-bitne reprezentacije vrijednosti piksela. U MATLAB-u su ove reprezentacije podržane klasama uint8 i uint16 koje omogućavaju da se svaki element matrice (piksel) memoriše kao 8-bitni, odnosno 16-bitni neoznačeni cijeli broj. Pored ovih, za reprezentaciju vrijednosti piksela koristi se i klasa logical. U dokumentaciji MATLAB-a su ove klase detaljno opisane.

U IPT-u su podržana četiri osnovna tipa slika koji se javljaju i u poznatim rasterskim grafičkim programima kao što je Adobe Photoshop. Ovi tipovi su:

- 1. Indeksirane slike,
- 2. Intenzitetske slike,
- 3. Binarne slike,
- 4. RGB slike.

Tipom slike se utvrđuje veza između vrijednosti elemenata matrice i boje, odnosno, intenziteta piksela.

#### Indeksirane slike

Indeksirane slike se memorišu kao dvije matrice, *matrica slike* i *kolormapa* ili *paleta*. Kolormapa sadrži vrijednosti koje predstavljaju boje piksela u slici. Matrica slike za svaki piksel sadrži indeks elementa u kolormapi koji predstavlja boju tog elementa. Ovi indeksi mogu biti klase uint8, uint16 ili double.

Kolormapa je matrica klase double dimenzija *m* x 3. Svaka vrsta kolormape sadrži vrijednosti crvene (R), zelene (G) i plave (B) komponente određene boje. R, G i B su realni skalari čije su vrijednosti iz opsega [0, 1]. Tipičan format grafičkog fajla koji podržava indeksirane slike je TIFF.

#### Intenzitetske slike

Matlab čuva intenzitetsku sliku kao jednu matricu u kojoj svaki element odgovara jednom pikselu slike. Matrica može biti klase double u kom slučaju su njeni elementi iz opsega [0,1], klase uint8 sa elementima iz opsega [0,255] ili klase uint16 sa elementima iz opsega [0, 65535]. Elementi matrice predstavljaju intenzitet (nivo sivila) pojedinih piksela, gdje vrijednost 0 odgovara crnoj, a 1 (odnosno 255 ili 65535) punom intenzitetu, tj. bijeloj boji.

#### **Binarne slike**

U binarnoj slici svaki piksel može poprimiti jednu od dvije moguće vrijednosti. Ove vrijednosti mogu se tumačiti kao objekat i kao pozadina. Matlab binarnu sliku memoriše kao matricu čiji elementi su 0 (pozadina) i 1 (objekat). Jasno, binarna slika može se posmatrati kao specijalan slučaj intenzitetske slike sa samo dva nivoa intenziteta. Elementi matrice su u ovom slučaju klase logical. Važno je napomenuti da se matrica čiji su elementi 0 i 1, ali čija klasa nije logical u MATLAB-u ne smatra binarnom slikom.

## RGB slike

Kao kod indeksiranih slika i kod RGB slika se boja piksela određuje na osnovu tri komponente R (crvene), G (zelene) i B (plave). Međutim, za razliku od indeksiranih slika kod koji se vrijednosti ovih komponenti čuvaju u posebnoj kolormapi, kod RGB slika one se pamte u samoj matrici slike. Dakle, matrica slike je dimenzija *m* x *n* x 3, gdje su *m* i *n* broj vrsta, odnosno kolona matrice slike. Može se smatrati da se treća dimenzija sastoji od tri ravni čijom kombinacijom se dobijaju boje piksela.

U standardnim formatima grafičkih fajlova slike su predstavljene kao 24-bitne slike pri čemu je po 8 bita rezervisano za predstavljanje svake od 3 komponente. U MATLAB-u elementi matrica mogu biti klase uint8, uint16 ili double.

Matlab omogućava konverzije između različitih tipova i klasa slika. Pošto smo u okviru ovih vježbi inicijalno najviše zainteresovani za obradu monohromatskih slika najviše ćemo koristiti intenzitetske i binarne slike. Osnovne funkcije za konverziju između različitih tipova i klasa slika su dati u Tabeli 1. Za više informacija pogledati *Image Processing Toolbox* dokumentaciju.

| Naziv     | Konvertuje ulaz u:       | Klase ulaznih podataka         |
|-----------|--------------------------|--------------------------------|
| im2uint8  | uint8                    | logical, uint8, uint16, double |
| im2uint16 | uint16                   | logical, uint8, uint16, double |
| mat2gray  | double (u opsegu [0, 1]) | double                         |
| im2double | double                   | logical, uint8, uint16, double |
| im2bw     | logical                  | uint8, uint16, double          |

Tabela 1. Konverzije između tipova i klasa slika

# Koordinatni sistemi

U zavisnosti od situacije, lokacije piksela na slici mogu se odrediti različitim koordinatnim sistemima. *Image Processing Toolbox* koristi dva koordinatna sistema:

- koordinatni sistem piksela, i
- prostorni koordinatni sistem.

# Koordinatni sistem piksela

U ovom koordinatnom sistemu slika se postmatra kao rešetka sa diskretnim elementima uređenim odozgo prema dole i sa lijeva u desno, kao na slici. Koordinate svakog piksela su određene uređenim parom (vrsta, kolona).



Očigledno, postoji jednoznačna korespondencija između ovako definisanih koordinata piksela i indeksa elemenata matrice u Matlabu. Na primjer, vrijednost piksela u drugoj vrsti i petoj koloni se nalazi u elementu matrice na koordinatama (2, 5). U koordinatnom sistemu piksela, pikseli se posmatraju kao diskretni elementi koji nemaju dimenzija. (2.3,3.4) u ovom koordinatnom sistemu nemaju smisla.

#### Prostorni koordinatni sistem

Ponekad je, međutim, pogodno piksel posmatrati kao kvadratnu oblast koja ima neku konačnu površinu. Sada pozicija (2.3, 3.4) ima smisla i različita je od pozicije (2, 3). Prostorni koordinatni sistem ilustrovan je sledećom slikom:



Vidimo da su koordinate centra svakog piksela u prostornom koordinatnom sistemu iste kao i koordinate tog piksela u koordinatnom sistemu piksela. Sa druge strane, razlikuju se ishodišta koordinatnih sistema, kao i redoslijed horizontalne i vertikalne koordinate.

U vježbama koje slijede najčešće ćemo koristiti koordinatni sistem piksela.

# Zadaci

- U ovim zadacima koriste se slike koje su date na sajtu predmeta i koje je najbolje sačuvati u radnom direktoriju (predefinisan je %MATLAB%\work, gdje je %MATLAB% direktorij u koji je MATLAB instaliran) i slike koje su uključene u Image Processing Toolbox, a nalaze se na putanji %MATLAB %\toolbox\images\imdemos.
- 2. Funkcija imread iz grupe *Image file I/O* učitava sliku iz fajla u radni prostor MATLAB-a. Na primjer,
  - a = imread('lena.jpg');

učitava JPEG sliku 1ena u matricu a u radnom prostoru MATLAB-a. Obratite pažnju na korištenje jednostrukih navodnika (') za navođenje imena fajla. Ako se, kao u prethodnom primjeru, ne navede putanja do fajla na disku MATLAB pokušava da pronađe fajl u tekućem direktoriju, a zatim u nekom od direktorija koji su zadani u MATLAB-ovoj listi putanja (File > Set Path). Putanja do slika koje su sastavni dio toolboxa je već unesena u ovu listu.

- 3. Proučiti dokumentaciju za funkciju imread. Koje formate grafičkih fajlova podržava ova funkcija? Koji tipovi slika se mogu učitati korištenjem ove funkcije? Koja je razlike u sintaksi za različite tipove slika?
- 4. Učitajte sliku 1ena. jpg korišćenjem funkcije imread. Kolike su dimenzije dobijene matrice? Kojoj klasi pripadaju elementi matrice? Pogledajte vrijednosti elemenata dobijene matrice. Kojem opsegu pripadaju njihove vrijednosti (odrediti minimalnu i maksimalnu vrijednost)?
- 5. Funkcija imshow(a) prikazuje sliku koja se nalazi u matrici a u radnom prostoru Matlaba na ekranu. Koje tipove slika podržava funkcija imshow? U novijim verzijama MATLAB-a postoji i funkcija imtool kojom se dobija sofisticiraniji grafički interfejs za prikazivanje slike. Prikažite sliku lena na ekranu korištenjem oba metoda i upoznajte se sa njihovim mogućnostima.
- 6. Naredba colorbar prikazuje na slici skalu intenziteta i odgovarajuće vrijednosti elemenata matrice.
- 7. Interaktivno prikazivanje vrijednosti intenziteta piksela na slici prikazanoj korištenjem imshow može se dobiti pomoću funkcije impixelinfo.
- 8. Korištenjem funkcije im2double promijeniti klasu kojoj pripadaju elementi matrice. Prikazati dobijenu sliku.
- 9. Funkcija imfinfo iz *Image file I/O* vraća strukturu u čijim poljima se nalaze informacije o slici koja se nalazi u zadatom grafičkom fajlu. Stvarni skup polja zavisi od pojedinog fajla i njegovog formata, ali postoje i neka zajednička polja za sve formate: ime fajla, datum modifikacije fajla, veličina fajla, format, verzija formata, širina, visina, broj bita po pikselu, tip slike. Pomoću imfinfo provjerite osnovne karakteristike slike lena.jpg.
- 10. Pomoću funkcije imwrite moguće je sačuvati sliku koja je memorisana kao matrica u radnom prostoru Matlaba u fajl u nekom od grafičkih formata. Ispitati koje formate grafičkih fajlova podržava ova funkcija. Sačuvati sliku lena u TIFF fajlu. U zavisnosti od formata fajla funkcija imwrite može primiti različite paramtre. U slučaju JPEG formata jedan od parametara je i kvalitet slike. Kvalitet može biti cijeli broj između 0 i 100. Manja vrijednost znači slabiji kvalitet što je posljedica JPEG kompresije. Sačuvati sliku lena (u JPEG formatu) sa kvalitetom q = 50, 25, 15, 5 i 0. Uporediti vizuelni kvalitet rezultata.
- 11. Pomoću imfinfo provjerite osnovne karakteristike slike blobs.png (sastavni dio Image Processing Toolboxa). Učitajte sliku korišćenjem varijante funkcije imread. Kolike su dimenzije dobijene matrice? Pogledajte vrijednosti elemenata matrice dobijene na taj način. Kojoj klasi pripadaju njene vrijednosti? Prikazati sliku na ekranu.
- 12. Standardan format za čuvanje i prenos slika u medicini je DICOM (Digital Imaging and Communications in Medicine). IPT podržava rad sa DICOM

fajlovima korištenjem funkcija dicomread za čitanje DICOM fajlova, dicomwrite za njihovo zapisivanje i dicominfo za čitanje meta-podataka sačuvanih u fajlu. Funkcije dicomread, dicomwrite i dicominfo se u osnovnoj varijanti koriste na način sličan već opisanim funkcijama imread, imwrite i imfinfo. Učitati sliku CT\_pluca.dcm u radni prostor MATLAB-a. Kolike su dimenzije slike? Kojoj klasi pripadaju elementi matrice? Pokušajte prikazati sliku na ekranu. Zbog čega se dobijaju loši rezultati?

- 13. Kako bi se izbjegli problemi sa prikazivanjem iz prethodne tačke funkciji imShOW se može zadati opseg vrijednosti elemenata matrice koji će se prikazivati pikselima odgovarajućih nivoa intenziteta. Tako imShOW(a, [low high]) prikazuje kao crne sve vrijednosti manje ili jednake od low, a kao bijele sve vrijednosti veće ili jednake od high. Vrijednosti između ove dvije prikazuju se kao međunivoi intenziteta. Ukoliko se koristi sintaksa imShOW(a, []) onda se lOW postavlja na minimalnu, a high na maksimalnu vrijednost u matrici a. Prikazati sliku iz prethodne tačke korištenjem čitavog opsega vrijednosti elemenata matrice, kao i opsega između 864 i 1264.
- 14. Ukoliko želimo da formiramo novu sliku čiji će elementi biti klase double iz opsega [0, 1] i koja će vizuelno biti ista kao zadnja slika iz prethodne tačke moramo najprije konvertovati elemente matrice u klasu double, a zatim skalirati njihove vrijednosti na opseg [0, 1] (vidjeti Tabelu 1).

b = double(a);

c = mat2gray(b, [864, 1264]);

Da li se isti rezultat dobije korištenjem funkcije im2double? Zašto?

- 15. Polazeći od slike lena, kreirati sledeće slike:
  - a. Sliku koja će biti slika u ogledalu polazne slike po horizontalnoj osi,
  - b. Sliku na kojoj će biti samo lice djevojke i
  - c. Sliku koja se dobija prorjeđivanjem polazne slike sa faktorom 2.