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Abstract—Very high resolution remote sensing images offer
increased amount of details available for image interpretation.
However, despite enhanced resolution these details result in
spectral inhomogeneities, making automated image classification
more difficult. In this letter we propose to combine texture
and local image features to address this problem. We first
address the Enhanced Gabor Texture Descriptor which is a global
descriptor based on cross-correlations between subbands, and
show that it achieves very good results in classification of aerial
images showing a single thematic class. Next, the performances
obtained on individual land cover/land use classes using our
global texture descriptor and local SIFT descriptor are compared.
We identify classes of images best suited for each descriptor, and
argue that these descriptors encode complementary information.
Finally, a hierarchical approach for the fusion of global and
local descriptors is proposed and evaluated over a number of
classifiers. The proposed descriptor fusion approach exhibits
significantly improved classification results, reaching the accuracy
of around 90%.

Index Terms—Remote sensing image classification, Gabor
texture descriptor, SIFT descriptor, stacked generalization

I. INTRODUCTION

REMOTE sensing image classification is an active re-
search topic spurred by the need to analyze continuously

growing body of remote sensing imagery. When the problem at
hand involves classification of very high resolution images we
cannot rely on spectral homogeneity any more, and must use
other elements of image interpretation, such as texture, shape,
pattern, size, etc. In an attempt to endow image classification
algorithms with this capability, object-oriented approach to
remote sensing image classification has emerged [1].

In this letter we are concerned with tile-based classification
of aerial images into land cover/land use classes and make
several contributions. First we propose a novel texture de-
scriptor based on cross-correlations between spatial-frequency
subbands of Gabor image decomposition, which are ignored
in the original Gabor texture descriptor [2]. We named that
descriptor Enhanced Gabor Texture Descriptor (EGTD). Next,
we compare per-class performances of both EGTD and bag-
of-words representations and identify classes on which one
of the descriptors outperforms the other. Finally, since these
representations are complementary, we propose a method for
fusion of the information obtained using both global and local
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Fig. 1. Examples of amplitude responses of Gabor filters (middle row) and
magnitudes of Gabor coefficients (bottom row) at different scales (s) and
orientations (o) for an aerial image.

image descriptors. We experimentally show that this method
significantly improves the classification performance.

One of the most popular texture descriptors in remote
sensing applications is Gabor texture descriptor [2]. In a recent
study [3] it was shown that Gabor texture descriptors yield
reasonable performance on large datasets of texture images
in the absence of affine and non-affine transformations in the
spectral domain. In remote sensing image analysis, it has been
used for image retrieval [4] and classification [5], [6]. Recently,
its extension to hyperspectral images has been proposed [7].

Orthogonal subband transforms used in image coding aim
at removing the correlations from image representation. It
has been noted [8], however, that the magnitudes of wavelet
coefficients in different subbands are correlated. This can be
observed in Fig. 1, where magnitudes of Gabor coefficients
at several scales and orientations are shown. The magnitudes
of coefficients tend to have similar values at the same relative
spatial locations in subbands. This fact has been used in texture
synthesis [9], as well as in texture similarity assessment for
image compression [10]. Also in [11], a local image descriptor
using cross-correlations between magnitudes of Gabor coeffi-
cients at different scales or orientations has been proposed
for aerial image classification. It has been shown that such a
descriptor outperforms the original Gabor texture descriptor.

Gabor wavelets are not orthogonal and there are also cor-
relations between raw coefficients at different scales and/or
orientations. Correlations between Gabor coefficients at dif-
ferent scales and the same orientation have been shown to
correspond to center-surround organization (opponency) of the
cells in human retina and used for texture [12] and satellite
image classification [13], as well as target detection in satellite
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images [14]. In [15], orientation difference descriptor for aerial
image classification which uses cross-correlations between
coefficients at different orientations and at the same scale has
been proposed. In this letter we propose enhanced Gabor tex-
ture descriptor (EGTD) which aggregates means and standard
deviations of Gabor coefficients as well as cross-correlations
between coefficients at different scales or orientations.

The proposed EGTD is mainly texture oriented. However,
there are land use classes which are entirely defined by indi-
vidual objects present in images, e.g. storage tanks, baseball
fields, intersections, etc. Due to the averaging of the wavelet
coefficients over the image domain, EGTD is unable to encode
local information. In that case local descriptors heavily used
in general object recognition could give better results.

One of the most popular local descriptors at the moment is
Scale Invariant Feature Transform (SIFT) proposed in [16]. It
is mainly used within bag-of-words (BoW) framework which
includes vector quantization of descriptors and a pooling
step in order to estimate their probability distribution in an
image. BoW classifiers of aerial images have been thoroughly
investigated in [5] and [17].

EGTD and SIFT encode complementary information about
the image and their fusion could improve the classification
performance. Our approach for descriptor fusion is hierar-
chical. We first train classifiers for both descriptors. Then
we concatenate the confidence scores returned by the used
classifiers and obtain the mid-level representation. Mid-level
descriptors are then used as inputs to the classifier at the
second level (metalearner). Recently, similar schemes, using
support vector machines as metalearners, have been proposed
for image classification, both general [18] and remote sensing
[19]. These hierarchical classifiers are, in fact, using stacked
generalization or stacking [20] as a way to combine classifiers.
It has been reported in the machine learning literature that
even with very simple metalearners, such as linear [21] or
regularized linear regression [22], good performance can be
achieved. In this letter we evaluate various metalearners at the
task of remote sensing image classification, and show that most
of them yield similar classification accuracies which makes
simple classifiers very appealing choices for metalearners.

The rest of the paper is organized in the following way. In
Section II, we present the theory behind the EGTD descriptor.
A review of stacking is given in Section III. Experimental
setup and results are reported in Section IV.

II. ENHANCED GABOR TEXTURE DESCRIPTOR

The starting point for the construction of the enhanced
Gabor texture descriptor is a Gabor filter bank at S scales
and K orientations. The impulse responses of the filters are
scaled and rotated versions of the Gabor function
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1
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+ jωx

]
. (1)

Suppose we have an image I (x, y) , (x, y) ∈ Ω, where Ω
is the set of image pixels. The output of the Gabor filter
with impulse response gmn (x, y) at scale m = 1, . . . , S and
orientation n = 1, . . . ,K, is given by the convolution

Wmn (x, y) = I (x, y) ∗ gmn (x, y) . (2)

In [2] Gabor texture descriptor which consists of means
(energies) and standard deviations of the modules of filter
responses at all scales and orientations has been proposed

µmn =

∫∫
Ω

|Wmn (x, y)| dxdy , (3)

σmn =

√√√√∫∫
Ω

(|Wmn (x, y)| − µmn)
2
dxdy . (4)

Let Wmn (x, y) and Wm′n (x, y) be the responses of Gabor
filters (2) at orientation n and scales m and m′. Based on [12],
we define the opponent features ψmm′n, as the energies of the
differences of normalized filter responses

∆Wmm′n (x, y) =

∣∣∣∣Wmn (x, y)

µmn
− Wm′n (x, y)

µm′n

∣∣∣∣ , (5)

ψmm′n =

∫∫
Ω

∆Wmm′n (x, y) dxdy. (6)

Note that our definition of the opponent features is slightly
different from the one in [12] because in the original paper
real-valued Gabor filters were used. The opponent features
can be regarded as measures of cross-correlations between the
filter responses at different scales.

The responses of the filters at the same scale but different
orientations can also be correlated depending on the type of
land cover. To the best of our knowledge those correlations
have not been used for image analysis thus far. Analogously
to (6) we propose using the energies of the differences of the
normalized filter responses at the same scale m and different
orientations, n and n′, as an image descriptor

∆Wmnn′ (x, y) =

∣∣∣∣Wmn (x, y)

µmn
− Wmn′ (x, y)

µmn′

∣∣∣∣ , (7)

ρmnn′ =

∫∫
Ω

∆Wmnn′ (x, y) dxdy. (8)

We also add standard deviations of the differences (5) and
(7) to the descriptor

υmm′n =

√√√√∫∫
Ω

|∆Wmm′n (x, y)− ψmm′n|2 dxdy, (9)

νmnn′ =

√√√√∫∫
Ω

|∆Wmnn′ (x, y)− ρmnn′ |2 dxdy. (10)

Finally, the EGTD is built by aggregating the quantities
given by equations (3), (4), (6), (8), (9) and (10) into a
SK (S +K)-dimensional vector f = [f1, . . . , fSK(S+K)]

T .
For computing the dissimilarity between images we adopt

distance metric based on the weighted L1-norm

dist
(
f (a), f (b)

)
=

SK(S+K)∑
j=1

∣∣∣∣∣f
(a)
j − f

(b)
j

α (fj)

∣∣∣∣∣ , (11)

where f (a) and f (b) are descriptors of two single-band images,
and α (fj) are the standard deviations of the respective features
over the training set.
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Fig. 2. Block diagram of the hierarchical descriptor fusion scheme.

III. FUSION OF DESCRIPTORS

In this letter we use stacking for fusing the descriptors. Our
stacking scheme uses two levels of classifiers as shown in Fig.
2. The classifiers at the first level (level-0) are used to build
the mid-level image representation. It is then fed to the level-1
classifier (metalearner) which outputs the final prediction.

Let us suppose that we have a set of C classes into which
the images have to be classified. The training set contains N
labelled images. For each image, M descriptors are computed,
fi = [fi1, fi2, . . . , fidi ]

T , where i = 1, . . . ,M and di is the
dimensionality of the i-th descriptor.

We train M level-0 classifiers, one for each descriptor,
and their outputs, p′

i = [p′i1, p
′
i2, . . . , p

′
iC ]

T
= cl (fi) , i =

1, . . . ,M , are confidence scores that the input image should
be classified into each of C classes. They are transformed into
posterior probabilities using the softmax function

pij =
exp

(
βp′ij

)∑C
k=1 exp (βp

′
ik)
, i = 1, . . . ,M, j = 1, . . . , C, (12)

where β controls the “sharpness” of the function. The poste-
rior probabilities are concatenated into a mid-level descriptor
P = [p1, . . . ,pM ]

T . The dimensionality of this descriptor is
MC. Finally, the metalearner is trained using the mid-level
descriptors. The metalearner outputs the posterior prediction
ĉ = ml (P).

There is an interesting variant of the described scheme,
proposed in [23]. Instead of using all confidence scores for
training the level-1 classifier, we can train C classifiers, one
for each class, using only confidence scores for that class,
zc = mlc (p1c, p2c, . . . , pMc) , c = 1, . . . , C. The test instance
is then classified to the class ĉ = argmaxc=1,...,C zc. This
approach is known as stackingC.

In order to prevent overfitting, the mid-level representation
is obtained using a procedure reminiscent of cross-validation
[20]. The training set is randomly split into P parts. One of
the parts is held out as validation set and level-0 classifiers
are trained using the rest of the training set. Then mid-level
representation is built for the samples from the validation set.
The procedure is repeated taking each of the P parts as the
validation set in turn. Thus we obtain mid-level representations
for all the samples from the training set and the metalearner
is trained using the complete training set.

IV. EXPERIMENTS

We perform the experiments on a dataset of aerial images
from the UC Merced used in [17]. All images are RGB,
256×256 pixels, with pixel resolution of one foot (0.3 meters).
They are manually classified into 21 classes, corresponding to
various land cover and land use types: agricultural, airplane,
baseball diamond, beach, buildings, chaparral, dense residen-
tial, forest, freeway, golf course, harbor, intersection, medium
density residential, mobile home park, overpass, parking lot,
river, runway, sparse residential, storage tanks, and tennis
courts. Each class contains 100 images.

In each experiment we randomly split the dataset into the
training and test sets. The training set is used to train the
level-0 classifiers, using P = 5, and to train the metalearner,
as described in Section III. The performances of the trained
classifiers are then assessed using the test set which was not
used for training the classifier. We repeat each experiment
on five different random training/test splits of the dataset
and report means and standard deviations of the obtained
classification accuracies. We report results obtained using 10,
50 and 90 training samples per class.

EGTD is computed using a Gabor filter bank at 4 scales
and 6 orientations. This results in 240-dimensional descriptors.
For classification we tested SVMs with linear, χ2, radial basis
function (RBF) and generalized RBF kernel using metric (11),

K
(
f (a), f (b)

)
= exp

[
− dist

(
f (a), f (b)

)]
. (13)

As a local descriptor, standard bag-of-words (BoW) descrip-
tor is chosen. It is obtained by computing SIFT descriptors on
a regular grid and vector quantizing them using a codebook
with 1000 codewords. Histogram of codeword occurrences is
a 1000-dimensional BoW image descriptor. In the study [24],
χ2 kernel is shown to perform best in this case. However, after
reviewers’ comments we tested the same kernels as for EGTD.

Multi-class classification is obtained by training one-vs-all
SVMs for all classes and classifying a test sample to the class
which corresponds to the maximal SVM response.

A. Global vs. Local Descriptors

We are first concerned with the performances of the tested
kernels for EGTD and BoW descriptors. From the results in
Table I we can see that for both descriptors the generalized
RBF kernel is a suitable choice.

Comparing the EGTD and BoW-based classifiers, we see
that the EGTD-based classifier slightly outperforms the BoW-
based one. The good performance of the EGTD is due to
suitability of textural features for classification of remote
sensing images and its ability to represent features salient over
scales and/or orientations. Besides the overall classification
performances of these two descriptors, we are also interested
in their performances on individual classes. In order to better
assess discriminative abilities of descriptors we train the
classifiers using 10 training samples per class. Such a small
number of training samples accentuates the need for good
image representations because there could exist significant
variations in images. On the other hand, had we used larger
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TABLE I
CLASSIFICATION ACCURACIES (%) OF GLOBAL AND LOCAL

DESCRIPTORS.

Number of training images per class
Descr. Kernel 10 50 90

EGTD

linear 48.03 ± 3.07 67.49 ± 0.42 73.71 ± 1.92
χ2 58.88 ± 2.83 76.76 ± 1.17 83.33 ± 2.50

RBF 61.16 ± 2.90 81.20 ± 1.14 86.76 ± 2.19
(13) 65.31 ± 2.22 82.88 ± 0.85 88.19 ± 1.56

BoW

linear 53.42 ± 2.83 71.98 ± 1.00 77.33 ± 1.64
χ2 62.86 ± 1.70 79.28 ± 0.87 84.29 ± 2.21

RBF 57.53 ± 2.05 76.72 ± 1.02 83.52 ± 2.79
(13) 62.32 ± 2.11 79.77 ± 0.71 84.29 ± 1.30
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Fig. 3. Comparison of global and local image descriptors. Cases when a
particular descriptor outperforms the other can be clearly seen.

number of training samples, the results for some classes would
have reflected the dataset bias instead of the discriminative
abilities of the descriptors.

In Fig. 3 the breakdown of classification accuracies accross
classes for both global and local descriptors is given. On the
left side of the bar graph are the classes on which global
descriptor outperforms the local one. Going to the right the
performance of the classifier using local descriptors improves
and, finally, on the right side are the classes on which the local
descriptor is better. We can see that the global descriptor is
better on classes such as agricultural, tennis court and river,
which contain image-scale features and are mainly texture
oriented, Fig. 4 top row. On the other hand, the local descriptor
is better on classes which contain distinctive structures whose
(lack of) presence is used to classify the images, e.g. harbor,
baseball diamond and intersection as can be seen in the bottom
row of Fig. 4.

These results suggest that global and local image descriptors
contain complementary information and their fusion should
improve the performance of the classifier. Simple concatena-
tion of the descriptors would result in a new descriptor of
high dimensionality, which increases the chance of overfitting.
Therefore, in the following we investigate stacking as an
approach for building ensembles of image classifiers.

B. Hierarchical Classifier

In order to combine the cues from both the global and local
descriptors we build a mid-level representation as described
in Section III. We compute the posterior probabilities using

Fig. 4. Images from the classes on which better results are obtained using
global descriptor (top row) and local descriptor (bottom row).

TABLE II
CLASSIFICATION ACCURACIES (%) OF VARIOUS METALEARNERS AND

THEIR STACKINGC VARIANTS (MARKED WITH C) FOR FUSION OF GLOBAL
AND LOCAL DESCRIPTORS.

Number of training images per class
Metalearner 10 50 90
Concatenation 60.69 ± 2.17 81.03 ± 0.96 86.67 ± 2.54
Linear SVM 66.39 ± 0.92 88.46 ± 0.92 92.38 ± 1.54
Linear SVM C 71.04 ± 3.73 88.90 ± 0.88 92.38 ± 1.87
Linear regr. 68.16 ± 3.08 88.65 ± 0.75 92.67 ± 1.53
Linear regr. C 70.16 ± 3.54 88.46 ± 0.90 91.81 ± 1.79
Ridge regr. 70.69 ± 3.25 88.70 ± 0.92 92.67 ± 1.29
Ridge regr. C 70.93 ± 1.36 88.36 ± 0.78 92.48 ± 1.48
RBF SVM 71.02 ± 3.02 89.43 ± 0.79 93.05 ± 1.56
RBF SVM C 71.06 ± 2.99 88.50 ± 1.03 93.05 ± 2.06
RBF ridge regr. 68.62 ± 2.80 88.93 ± 0.76 93.90 ± 1.09
RBF ridge regr. C 71.41 ± 2.84 88.65 ± 0.96 92.95 ± 2.27

(12) with β = 1, and normalize the obtained vectors to zero
mean and standard deviation of unity for each input sample.
Finally, mid-level representation is obtained by concatenating
these normalized vectors.

Thus obtained mid-level representation is then fed into a
metalearner. We evaluate the following metalearners: linear
regression, ridge regression, linear SVM, RBF SVM and ridge
regression with RBF kernel, as well as their stackingC variants.
Lasso regression had not brought any improvements so we
decided to leave it out. Multi-class classification is performed
in the same way as for level-0 classifiers.

The obtained results are given in Table II. The accuracies
for simple concatenation of image descriptors are given in
the first row. It is the simplest way of fusion of descriptors
and in this case no metalearner is actually used. However,
its performance is consistently worse compared to the cases
when metalearners are used. As for tested metalearners we can
see that the achieved accuracies are very similar. From these
results we make several observations:

• There is no need to use kernels in metalearners. Linear
classifiers do equally well with reduced complexity. This
conclusion is intuitively appealing because the mid-level
representation consists of confidence scores of level-0
classifiers. Linear metalearners combine these confidence
scores giving higher weights to outputs of those level-
0 classifiers having high confidence of predicting the
correct class. On the other hand, classifiers with RBF ker-
nels strongly depend on Mahalanobis distance between
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TABLE III
CLASSIFICATION ACCURACIES (%) AFTER DIMENSIONALITY REDUCTION

OF EGTD.

Number of training images per class
Metalearner 10 50 90
RDA EGTD 56.72 ± 3.38 75.58 ± 2.03 81.90 ± 2.33
Linear SVM C 67.44 ± 2.21 86.57 ± 1.20 90.48 ± 2.05
RBF SVM 66.84 ± 2.23 87.56 ± 1.28 91.05 ± 2.55

the samples. However, it is not clear how Mahalanobis
distance in the feature space of confidence scores should
be interpreted.

• Since the dimensionality of the mid-level representation
is relatively low, there is no need to use SVM whatsoever.
In this particular case, the dimensionality of the mid-level
descriptors is 2C = 42, and it can be seen that regression-
based classifiers perform very well.

• The results for stackingC suggest that the metalearners
can be trained using mid-level descriptors whose di-
mensionality equals the number of different descriptors,
two in this case. Regression-based classifiers with two-
dimensional descriptors have very low complexity.

C. Dimensionality reduction

The dimensionality of EGTD can be fairly high, e.g. it
is 240 in the described experiments. Therefore, we explored
dimensionality reduction of EGTD using principal component
analysis, linear discriminant analysis, and regularized linear
discriminant analysis (RDA). We obtained the best results ap-
plying RDA separately to three parts of EGTD, namely means
and standard deviations of subbands, means and standard
deviations of subband differences at the same orientation and
different scales, and means and standard deviations of subband
differences at the same scale and different orientations. The
dimensionality of the resulting descriptor is 3 × 20 = 60.
For classification at level-0 we used SVM with the same
kernel as for the original descriptor. In Table III are given the
results for level-0 classifier (RDA EGTD) and for the two best
metalearners. The results for other metalearners are similar.
Although the accuracies when using only the level-0 classifier
are reduced 6-8%, the accuracies of the resulting hierarchical
classifiers are at most 4% lower. Therefore, we believe that the
dimensionality reduction in this case has interesting potential
and should be investigated further.

V. CONCLUSION

In this letter we proposed EGTD and stacking-based ap-
proach for very high resolution remote sensing image clas-
sification. We experimentally showed that EGTD and BoW
representations are complementary and their fusion signif-
icantly improves the classification performance. Descriptor
fusion using stackingC with linear or ridge regression performs
very well in terms of effectiveness and complexity.

It is important to note that this method for descriptor fusion
is general. It is not restricted to the particular descriptors and
classifiers used in this letter, so it can be used with different
descriptors and classifiers, provided that the classification
confidence scores for classes are available.

In the future work we plan to investigate fusion of more de-
scriptors and, particularly, the inclusion of color information.
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