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ABSTRACT

Texture plays a fundamental role in remote sensing image
analysis and texture descriptors based on Gabor filter banks
provide a reasonable baseline for aerial image classification.
It is known that Gabor wavelet coefficients in different sub-
bands are correlated and cross-correlations between Gabor
wavelet coefficients at different scales have already been used
for image classification.

In this paper we propose using cross-correlations between
Gabor wavelet coefficients at different orientations as a de-
scriptor for aerial image classification. We extend our de-
scriptor to color images using new quaternion representation
based on symplectic decomposition. On currently the largest
publicly available dataset of aerial images we show that the
proposed descriptors obtain 85% correct classification rate
thus improving state-of-the-art considerably.

Index Terms— Aerial image classification, Texture anal-
ysis, Quaternions, Gabor filter banks

1. INTRODUCTION

In general purpose image classification, approaches based
on local features such as Scale Invariant Feature Transform
(SIFT) are prevalent today. This is understandable since local
features have some desirable properties that allow, to a certain
extent, for compensation of adversary effects, such as illu-
mination and viewpoint variations, occlusion, and intra-class
variability. Local features also give good results in texture
classification.

However, in specialized domains some other descriptors
may show better results. For example, orthophoto aerial im-
ages contain no viewpoint variations, and in land cover/land
use analysis occlusions are not very significant. Nevertheless,
rotations and translations are present in these images.

Texture plays a fundamental role in remote sensing image
analysis. In a recent study [1] it was shown that Gabor texture
descriptors yield reasonable performance on large datasets of
texture images in the absence of affine and non-affine trans-
formations. Motivated by this result we decided to further

investigate the use of Gabor filters for aerial image classifica-
tion.

The fact that magnitudes of wavelet image coefficients are
correlated was exploited in texture synthesis [2] and retrieval
[3]. Gabor wavelets are not orthogonal and there are cross-
correlations even among raw coefficients. This was used in
[4] where it was shown that center-surround operation in hu-
man vision is equivalent to computing correlation coefficients
between Gabor wavelet coefficients at different scales and at
the same orientation.

However, to the best of our knowledge, cross-correlations
between Gabor wavelet coefficients at different orientations
and at the same scale have still not been used as image de-
scriptors. The main contributions of this paper are the ori-
entation difference descriptor obtained from the responses of
Gabor filters at different orientations and at the same scale,
given in Section 2, and its extension to color images obtained
using quaternion framework for color image representation,
Section 3. We test the proposed descriptors on a challenging
21-class dataset of aerial images and demonstrate that our re-
sults considerably improve state-of-the-art compared to both
local and global image descriptors, Section 4.

2. ORIENTATION DIFFERENCE DESCRIPTOR

The starting point for the construction of the descriptors in
this paper is a Gabor filter bank at S scales and K orien-
tations. The impulse responses of the filters are scaled and
rotated versions of the Gabor function.

Suppose we have a multispectral image I (x, y) , (x, y) ∈
Φ, where Φ is the set of image pixels, and let Ii (x, y) is its i-
th spectral band. The output of the Gabor filter with impulse
response gmn (x, y) at scale m = 1, . . . , S and orientation
n = 1, . . . ,K, is given by the convolution

Wimn (x, y) = Ii (x, y) ∗ gmn (x, y) . (1)

In [5] Gabor texture descriptor which consists of means
(energies) and standard deviations of the filter responses was
proposed. This descriptor proved as a reasonable baseline in
aerial image classification [6, 7, 8].



One of the reasons for the popularity of Gabor-based de-
scriptors is their biological plausibility. It is well known that
receptive fields of the cells in the retina of the eye have center-
surround organization. A cell excited by the incident light in
the small central area of its receptive field will be inhibited by
the light in the larger region surrounding the center. Because
the photoreceptors in the central and surrounding areas can
be of the same or different classes, the cells can show spatial
and/or chromatic antagonism. Center-surround organization
of the receptive fields has been modelled by differences of re-
sponses of multiscale filters, and thus obtained color opponent
features have been used for texture description [4], visual at-
tention modelling [9], target detection in satellite images [10],
and so on.

Let Wimn (x, y) and Wjm′n (x, y) be the responses of
Gabor filters (1) for spectral bands i and j, scales m and
m′, and orientation n, respectively. The opponent features
ψijmm′n are defined as the energies of the differences of nor-
malized filter responses, where normalization is performed
using the energies of the filter responses. It was shown in [4]
that the opponent features for real-valued Gabor filters can be
expressed as ψijmm′n = 2− 2rijmm′n, where rijmm′n is the
correlation coefficient of the filter responses Wimn (x, y) and
Wjm′n (x, y). When complex-valued Gabor filters are used,
this relation does not hold any more, but the opponent fea-
tures can still be regarded as a measure of cross-correlation
between the filter responses at different scales and/or for dif-
ferent spectral bands.

Besides cross-correlations between the responses of Ga-
bor filters at different scales, the responses of the filters at
the same scale but different orientations are also correlated.
Analogously to opponent features, we propose using the en-
ergies of the differences of the normalized filter responses at
the same scale m and different orientations, n and n′, as an
image descriptor. We first compute the differences of the nor-
malized filter responses

dWijmnn′ (x, y) =

∣∣∣∣Wimn (x, y)

µimn
− Wjmn′ (x, y)

µjmn′

∣∣∣∣ , (2)

where µimn are the total energies of the filter responses for
spectral band i, scale m, and orientation n

µimn =

∫∫
Φ

|Wimn (x, y)| dxdy. (3)

The orientation difference descriptor consists of the means
(energies) and standard deviations of differences (2)

ρijmnn′ =

∫∫
Φ

dWijmnn′ (x, y) dxdy, (4)

νijmnn′ =

√√√√∫∫
Ψ

|dWijmnn′ (x, y)− ρijmnn′ |2 dxdy. (5)

Thus obtained descriptor is B2SK (K − 1)-dimensional,
where B is the number of spectral bands.

3. QUATERNION ORIENTATION DIFFERENCE
DESCRIPTOR

In this paper we design a color image descriptor using quater-
nion framework for representation of color images. An RGB
image can be represented as a pure quaternion [11]

I (x, y) = r (x, y) i+ g (x, y) j + b (x, y) k, (6)

where i, j, k are unit quaternions, i2 = j2 = k2 = −1. In our
representation we change the basis of the vector part of (6)
from (i, j, k), to (µ1, µ2, µ3), where µ2

1 = µ2
2 = µ2

3 = −1.
The image is then

I (x, y) = q1 (x, y)µ1 + q2 (x, y)µ2 + q3 (x, y)µ3. (7)

and its symplectic decomposition [11] is

I (x, y) = I(1) (x, y) + I(2) (x, y)µ2. (8)

In our case

µ1 =
i+ j + k√

3
, (9)

µ2 =
i− j√

2
, (10)

µ3 =
i+ j − 2k√

6
, (11)

so µ1 corresponds to the gray line in RGB color-space.
Hence, the symplex part I(1) (x, y) in (8) corresponds to
luminance signal, and the perplex part I(2) (x, y) corresponds
to chrominance signal. This representation is related to the
opponent color-space given by

q2 = o1 =
r − g√

2
(12)

q3 = o2 =
r + g − 2b√

6
(13)

q1 = o3 =
r + g + b√

3
. (14)

The image I (x, y) is filtered using quaternion Gabor fil-
ter bank obtained by scalings and rotations of the quaternion
Gabor function given as

g (x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πµ1Ωx

]
.

(15)
The responses of the Gabor filters Wmn (x, y) are full

quaternions with symplectic decomposition

Wmn (x, y) =W (1)
mn (x, y) +W (2)

mn (x, y)µ2. (16)



The simplex part of the response corresponds to the re-
sponse of the Gabor filter to luminance signal, and perplex
part corresponds to its response to chrominance signal. Since
these signals can be regarded as complex-valued we compute
the quantities given by (4) and (5) for both parts of the re-
sponse, dropping spectral band indices, and obtain quaternion
orientation difference descriptor. These quantities are com-
puted for all scales and orientations with n ̸= n′, resulting in
a 2SK (K − 1)-dimensional descriptor.

For computing the dissimilarity between images we adopt
distance metric based on the weighted L1-norm

d (Fa,Fb) =

2SK(K−1)∑
j=1

∣∣∣∣fa,j − fb,j
σ (fj)

∣∣∣∣ , (17)

where image descriptors are Fa =
[
fa,1, . . . , fa,2SK(K−1)

]T
and Fb =

[
fb,1, . . . , fb,2SK(K−1)

]T
, and σ (fj) are the stan-

dard deviations of the respective features over the training set.

4. EXPERIMENTAL RESULTS

For classification, we use support vector machines (SVM)
with a variant of radial basis function kernel, which uses dis-
tance metric (17) instead of Euclidean metric [8]

K (Fa,Fb) = exp [−d (Fa,Fb)] . (18)

Multi-class classification is obtained by training one-vs-all
SVMs for all classes and classifying a test sample to the class
which corresponds to the maximal SVM response.

We test the proposed descriptor on a dataset of aerial im-
ages [7]. All images are multispectral (RGB), 256 × 256
pixels, with pixel resolution of one foot. They are manually
classified into 21 classes, corresponding to various land cover
and land use types: agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, freeway,
golf course, harbor, intersection, medium density residential,
mobile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts. Each class con-
tains 100 images. For feature extraction in all experiments we
use Gabor filter banks at 4 scales and 6 orientations.

We first test the grayscale orientation difference descrip-
tor. Consequently, all images are first converted to grayscale,
using I (x, y) = 0.299r (x, y)+0.587g (x, y)+0.114b (x, y),
and descriptors are computed using equations (4) and (5). For
comparison purposes, we also included the results for Gabor
texture descriptors, as well as means and standard deviations
of the differences of the filter responses at different scales and
same orientation. Since we are considering only grayscale
images, there is only one spectral band, i.e. i = j for compu-
tation of opponent features as well as in equations (2) - (5).

We averaged the classification rates over 5 different ran-
dom dataset splits. The results are shown in Fig. 1, where
average correct classification rates for training set sizes from
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Fig. 1. Classification rates for grayscale descriptors.

10% to 90% of the total dataset size are plotted. Error bars
represent the standard deviation of the mean performance
over 5 dataset splits. We can see that descriptors based on the
differences between filter responses for different orientations
outperform all the other descriptors.

For color images we are using quaternion image repre-
sentation (6) and quaternion Gabor filters (15) at 4 scales
and 6 orientations. From the responses of the filters we ob-
tain the descriptor using (4) and (5) for both the simplex and
the perplex parts of the response. This descriptor is 240-
dimensional.

For comparison we also compute two color texture de-
scriptors. The first is color opponent descriptor, proposed in
[4], augmented with standard deviations of differences of fil-
ter responses at different scales and the same orientation. This
descriptor is 648-dimensional. The second is orientation dif-
ference descriptor for color images obtained using (4) and (5).
This descriptor is 1080-dimensional.

We also compare our results with the results from [7],
where the authors used the classifiers based on bag-of-
visual-words, as well as bag-of-visual-words with spatial co-
occurrence kernel. We performed 5-fold cross-validation with
80% of the images in the training set, and 20% of the images
in the test set. The results are given in Table 1. Confidence
intervals for the results from the literature were not available.
We can see that grayscale orientation difference descriptors
outperform the approaches based on bag-of-visual-words,
which are also based on grayscale images. Including color
information further improves the performance with quater-
nion orientation difference and color orientation difference
descriptors performing similarly. However, the dimension-
ality of the quaternion orientation difference descriptor is
much lower. Thus, we can see that image descriptors based
on cross-correlations between the responses of the Gabor
filters at different orientations yield good performance for



Table 1. Classification accuracies.
Descriptor Accuracy (%)
Grayscale orientation difference 80.67 ± 0.91
Color opponent features 81.10 ± 0.55
Color orientation difference 84.86 ± 1.17
Quaternion orientation difference 85.48 ± 1.02
Bag-of-words [7] 76.8
BoW + SCK [7] 77.7
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Fig. 2. Confusion matrix for quaternion orientation difference
descriptors. (Best viewed in color.)

aerial image classification and including color information
considerably improves the state-of-the-art on this dataset.

Confusion matrix for quaternion orientation difference
descriptors is shown in Fig. 2. Since our descriptor is focused
on texture representation, the obtained results for texture-
oriented classes (e.g., beach, chaparral, forest) are very good.
However, for object-oriented classes (e.g., buildings, storage
tanks, tennis courts) the classification rates are lower.

5. CONCLUSION

In this paper we proposed a descriptor which yields classi-
fication rate of 85% on a challenging dataset of aerial im-
ages. These results are much better than those obtained using
popular bag-of-visual-words descriptor and its spatial exten-
sions. The consequence is that, although bag-of-visual-words
descriptor have enjoyed significant popularity in recent years,
the “one size fits all” approach may not be the best strategy
for specialized domains. Descriptors have to be carefully cho-
sen and the descriptors proposed in this paper may be a good
starting point in aerial image classification.

In the future work we will investigate application of di-

mensionality reduction techniques to our descriptor. Since
our descriptor is predominantly texture-oriented we plan to
investigate combinations of local and global descriptors in or-
der to obtain better results on classes that are more object-
oriented.
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