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Abstract—Bag-of-words image representations based on local
descriptors are common in image classification and retrieval
tasks. However, in order to achieve state-of-the-art results, com-
plex hand-crafted feature filters and/or support vector classifiers
with nonlinear kernels are needed. Compared with hand-crafted
features, unsupervised feature learning is a popular alternative,
which results in feature filters adapted to the problem domain
at hand. Although both color and intensity are important cues
for remote sensing image classification and color images are
commonly used for unsupervised feature learning, most of the
existing algorithms do not take into account interrelationships
between intensity and color information. We address this problem
by using quaternion representation for color images and propose
unsupervised learning of quaternion feature filters, as well as
feature encoding using quaternion orthogonal matching pursuit.
By using quaternion representation we are able to jointly encode
intensity and color information in an image. We obtain local
descriptors by soft thresholding and computing absolute values
of scalar and three vector parts of the quaternion-valued sparse
code. Local descriptors are pooled, power-law transformed and
normalized, yielding the resulting image representation. The ex-
perimental results on UC Merced Land Use and Brazilian Coffee
Scenes datasets are comparable or better than the state-of-the-
art, demonstrating the effectiveness of the proposed approach.
The proposed method for quaternion feature learning is able
to adapt to the characteristics of the available data and, being
fully unsupervised, it emerges as a viable alternative to both
hand-crafted representations and convolutional neural networks,
especially in application scenarios with scarce labeled training
data.

Index Terms—Remote sensing image classification, unsuper-
vised feature learning, sparse image representations, quaternion
image processing,

I. INTRODUCTION

Hand-crafted local feature representations, such as scale-
invariant feature transform (SIFT), and histograms of oriented
gradients (HOG), dominate in the field of remote sensing
image classification. An image representation is obtained by
encoding the local features using a learned dictionary and
spatially pooling the feature codes [1]-[3]. Although good
classification accuracies have been obtained, hand-crafted de-
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scriptors are not adapted to the problem domain at hand and
can be expensive to compute.

In the last decade, however, unsupervised feature learning
has become an attractive alternative to hand-engineered repre-
sentations. The main premise of unsupervised feature learning
is that it is possible to obtain discriminative image features
starting from raw pixel values. This idea stems from [4], where
it has been shown that it is possible to obtain Gabor-like filters
by applying sparse coding to natural image patches.

Both intensity and color are important visual cues for
classification of remote sensing images. Previous work using
hand-crafted descriptors [2], [5], has shown that combination
of intensity and color information is beneficial for remote
sensing image classification. On the other hand, most of the
unsupervised feature learning algorithms, e.g. [6]-[8] produce
filters that can encode either intensity or color information.
Furthermore, filters that respond to color information are
tuned to specific color antagonisms and do not take into
account intensity information, which has adverse effect on
classification accuracy. This observation was the starting point
in [9], where quaternion representation for color images along
with quaternion principal component analysis (QPCA) and
K-means clustering was used for jointly encoding intensity
and color information in aerial images. However, although
high classification accuracy was obtained, outperforming more
traditional approach of concatenating information from color
channels, it was necessary to use support vector machine
(SVM) classifier with nonlinear x? kernel which resulted in
high computational cost. This drawback can be mitigated by
using kernel mapping [10], which increases memory require-
ments. On the other hand, approaches based on unsupervised
feature learning using real-valued orthogonal matching pursuit
(OMP) [11], with dictionaries learned using K-SVD algorithm
[12], in conjunction with linear SVM classifiers, have achieved
state-of-the-art classification accuracies on various image clas-
sification tasks [6], [7].

In this paper we address the question of learning features
which capture interrelationships between intensity and color
information in an image, as well as lowering computational
complexity of the resulting classifier. In order to achieve
this goal, we investigate local features obtained using raw
quaternion pixel values, as well as their projections onto
QPCA basis, with or without dimensionality reduction. Sparse
coding of features is performed using quaternion orthogonal
matching pursuit (Q-OMP). We perform the experiments with
random dictionary, randomly sampled image patches, as well
as dictionaries learned using quaternion K-means (QK-means)
and quaternion K-SVD (QK-SVD) algorithms.
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When quaternion representation is used for color images,
pixel values in red, green and blue color channels are regarded
as a single entity — pure quaternion, and the interrelationships
between color channels are embedded into definitions of image
processing operators. The response of a quaternion feature
filter is a full quaternion [13], whose scalar part is related
to intensity, and vector parts correspond to red, green and
blue color channels. In this way, the response of a single
quaternion feature filter is able to indicate that, for example,
there is both an edge in general, and that it is an edge between
green and blue regions, at the specific location in an image. On
the other hand, a single real-valued feature filter can encode
this information only partially, that is, the existence of either
an edge in general or a green-blue edge. In this way one
part of the information is lost and cannot be used for image
classification. When quaternion features are used it is possible
to use only one part or complete information, which enables
better discrimination between classes. This approach results in
state-of-the-art classification accuracies using SVM classifier
with a linear kernel. Furthermore, we achieve faster training
and classification without penalizing memory usage. To the
best of our knowledge, quaternion sparse representations have
not been used for image classification thus far.

The main contributions of this paper are unsupervised learn-
ing of quaternion feature filters for computing local features
and image representation based on sparse encoding of local
features using quaternion orthogonal matching pursuit.

The rest of the paper is organized as follows. Related work
is reviewed in Section II. In Section III, the quaternion-valued
local features are introduced, and in Section IV the proposed
image representation is presented. Experimental results are
given in Section V. Section VI concludes the paper.

II. RELATED WORK

Bag-of-words image representations based on SIFT or HOG
descriptors are common in classification and retrieval tasks for
general-purpose [14], as well as for remote sensing images
[11, [2], [5], [15], [16]. These representations use vector
quantization for image encoding, and non-linear classifiers
must be used in order to obtain good classification accuracies.
In order to overcome this drawback, in [17] sparse codes
of SIFT descriptors were proposed for image representation
instead of vector quantizaton. Coupled with spatial pyramid
matching and linear SVM this approach yielded high clas-
sification accuracies on several common image classification
benchmarks. Sparse coding of SIFT descriptors is applied to
satellite image classification in [18] and [19].

In the earlier studies, e.g. [20], raw image patches were
shown to yield inferior image representations to SIFT de-
scriptors with regard to classification accuracy. Furthermore,
in [3] image representations based on three types of features,
namely raw pixel values, responses of oriented filters, and
SIFT features, along with OMP encoding were evaluated for
aerial image classification. The best results were obtained
using SIFT features and the worst using raw pixel values.
It should be noted that, although the dictionary for feature
encoding was learned from examples, the best performance

was obtained using hand-crafted features. However, in [6] it
was shown that unsupervised feature learning from raw pixels
based on pre-whitening of data using zero-phase component
analysis (ZCA) and K-means clustering can result in classi-
fication accuracies comparable or better than those obtained
using more complex deep architectures as well as hand-crafted
features. Features for color images are obtained by applying
the learning algorithm to concatenated color channels.

Applying principal component analysis (PCA) to image
patches and clustering thus obtained low-dimensional local
features also yielded improved results in medical [21] and
remote sensing image classification [22]. More recently, a sim-
ple approach to unsupervised feature learning named PCANet
has been proposed [23], which uses PCA, binary hashing and
histograming in order to compute an image representation.

In the area of remote sensing image classification, in [24]
the authors investigated feature learning using PCA and deep
belief networks for classification of high resolution aerial im-
ages, and compared the obtained results to several well known
hand-crafted features. Sparse coding on a local manifold of
raw image patches was proposed in [8]. However, it requires
nonlinear histogram intersection kernel in order to obtain
state-of-the-art classification accuracy. Saliency information
for unsupervised feature learning from local image patches
was used in [25]. In [26], semisupervised learning of high-
level features is proposed in order to overcome the problem
of having few labeled training examples.

Quaternion representation of color images was proposed
in [27], and used for face recognition [28], texture [29] and
remote sensing image classification [30]. Quaternion principal
component analysis (QPCA) has been introduced in [31] and
[32]. In [13] QPCA of local image patches and K-means
clustering were used for color texture segmentation, and in
[9] for aerial image classification.

Recently, sparse representations for quaternion-valued sig-
nals were analyzed in detail in [33]. The authors paid atten-
tion to non-commutativity of quaternion multiplication and
proposed quaternion versions of orthogonal matching pursuit
algorithm based on left and right multiplication linear models
for quaternion signals. In [34] quaternion-based sparse repre-
sentation of color images was used for image reconstruction,
denoising and inpainting, and in [35] for color image super-
resolution. Quaternion-based sparse representation is obtained
using quaternion K-SVD [36] for dictionary learning, and
quaternion OMP for computing the sparse representation.

III. UNSUPERVISED QUATERNION FEATURE LEARNING

By learning feature filters from examples instead of relying
on manually designed features, we can obtain an image
representation that is better suited to the problem at hand. In
this case, both the filters and dictionary for feature encoding
are learned from unlabeled training examples.

In Fig. 1, an overview of our approach is shown. Images
are represented using pure quaternions [27]

Q(x,y) = Qr (2,9) i+ Qq (z,9)J + Qp (z,9) K, (1)

where Q, (z,y), Qg (x,y), and Qp (z,y) are pixel values in
red, green, and blue color channels respectively, and (z,y)
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Fig. 1: Overview of the proposed approach for image classi-
fication using learned quaternion features.

are the pixel coordinates. Feature learning phase starts with
randomly sampling a number of patches from training images
and reshaping patch pixel values into a quaternion-valued
vector form.

In [6] image patches are normalized to zero mean and
standard deviation of one, and in [7] only normalization of
mean is performed. We observed that, when quaternion-valued
patches are used, the best results are obtained without patch
normalization whatsoever.

In this paper we investigate two types of local feature filters:
(i) raw pixel values, and (ii) projection of pixel values onto
a quaternion PCA (QPCA) basis [31], [32]. Raw pixels are
the simplest features, and in that case no feature learning is
necessary. On the other hand, when QPCA is used, the feature
learning stage consists of learning a QPCA basis.

Let x; € H",2 = 1,..., N be the vectors of pixel values

in image patches, where N is the total number of training
patches. QPCA basis is computed by determining eigenvalues
and eigenvectors of the covariance matrix of the training

patches
X
T
=N Z XiX; . 2)
i=1
Let U = [uj,uy,...,u,] be the matrix of its eigenvectors,

i.e. QPCA basis vectors, and {1, Ao, ...,
sponding eigenvalues.

Thus obtained QPCA basis can be used for quaternion zero-
phase component analysis (QZCA) whitening of the patches

An} be the corre-

1
Xuwhite = U diag <)\+6> UTX7 3)

where diag (-) denotes diagonal matrix and € is a small positive
regularization constant. QPCA basis can also be used for
dimensionality reduction of local features

xq = Ulx, )

where UY is a matrix of basis vectors corresponding to d
largest eigenvalues.

Since the covariance matrix (2) contains products of pure
quaternions, the obtained QPCA basis will contain full quater-
nions. Given the QPCA basis, in the feature filtering phase,
the patches from the input image are sampled using a sliding
window, normalized, and projected onto the QPCA basis. This
operation can be regarded as filtering the input image using
the set of QPCA filters. The output of a QPCA filter is
essentialy the convolution of a full quaternion filter with a
pure quaternion image. In [13] has been shown that the result
of this convolution is a full quaternion signal whose real part
is related to intensity, and vector parts correspond to red, green
and blue color channels.

IV. QUATERNION FEATURE ENCODING

In this section we review extensions of OMP and dictionary
learning algorithms to quaternion-valued signals and propose
an image representation based on quaternion-valued sparse
codes of image patches.

A. Quaternion Orthogonal Matching Pursuit

Given the overcomplete dictionary D € H"*M containing
M n-dimensional atoms, {dk}ﬁil as columns, sparse repre-
sentation, s € HM, of the signal y € H", is obtained by
solving

min ||s|lg s.t. y = Ds, (5)
S

where |[|s||o is the ly pseudo-norm defined as the number of
non-zero elements of s. Since the dictionary atoms are Lo
normalized, the elements of the sparse representation reflect
the energy of the corresponding atoms in the signal.

The optimization in (5) is NP-hard. Nevertheless, it is
possible to obtain an approximate solution by constraining the
sparse representation to have at most K nonzero elements. The
optimization problem now becomes

msin||y—Ds||§ st |sllo < K, (6)
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1: function s = Q-OMPr(y, D)

2: Input: Signal vector y, dictionary D

3: Output: Coefficient vector s

4: Initialization: k < 1, ¥ <y, dictionary D° « ()

5 repeat

6 for m < 1, M do

7 Scalar Products: C¥ <« (e*=1 d,,) = d k1

8: end for

o: Selection: m* «+ arg max,,, |C% |

10: Active Dictionary: D¥ «— [D¥~1,d, x|

11 Active Coefficients: s* < arg min ||y — D*s¥||3
12: Residue: € + y — DFs*

13: k«—k+1

14: until stopping criterion

15: end function

Fig. 2: Right-multiplication Q-OMP algorithm.

where K < M is a constant. Orthogonal matching pursuit
[11] provides an efficient way to obtain a solution to (6), es-
pecially when the number of nonzero coefficients is small. The
algorithm greedily selects the dictionary atoms and computes
the corresponding representation coefficients in such a way as
to minimize the representation error of the residual signal.

Quaternion extension of the OMP algorithm is proposed
in [33]. Since quaternion multiplication is non-commutative,
two models were considered — left and right-multiplication
linear model. In this paper we chose to work with the right-
multiplication linear model. We believe that the results would
be similar had we chosen the left-multiplication linear model.
Right-multiplication quaternion orthogonal matching pursuit
(Q-OMPr) finds the sparse representation of the signal by
solving the optimization problem (6), where || - |2 denotes
the Lo norm in the quaternion space.

The algorithm is summarized in Fig. 2. In each iteration
of the algorithm one dictionary atom is selected based on
the values of scalar products of the dictionary atoms d,,
and the current signal residual €*~1. The selected dictionary
atom corresponds to the scalar product with maximal modulus
(Step 9). The active dictionary is subsequently updated with
the selected atom and the active coefficients s* are computed
by orthogonal projection of the signal vector y onto the active
dictionary D* (Step 11)

s" = argmin ||y — D"s||3
S

= (09)"pt) " 0"y )

The pseudoinversion in (7) can be computed recursively as
proposed in [11] and extended to quaternions in [33]. The
new signal residual is computed in Step 12 and the described
steps are repeated until the stopping criterion is met.

B. Dictionary Learning

Let’ Y € H"*¥ be the training set containing N quaternion-
valued n-dimensional signals, Y = [y1,...,yn~]. Dictionary
learning algorithm finds the dictionary D € H"*™ containing

M, n-dimensional quaternion atoms {dk}kle, such as to
obtain the best sparse representation of the signals from the
training set, i.e. by solving the optimization problem

r}gigHY—DsH% st Vi, [|silo < K, ®)

where S = [s1,...,sy] is the matrix of sparse representation
coefficients for the signals from the training set, and || - |7
denotes Frobenius norm.

When a dictionary is learned using QK-SVD algorithm,
optimization in (8) is performed iteratively. First, the dictio-
nary D is held fixed and the sparse representations of the
signals from the training set are sought. This step can be
performed using any sparse coding algorithm and we use
Q-OMPr for efficiency reasons [12]. Next, given the sparse
representation, the dictionary is updated one column at a time.
All columns but one, dg, in the dictionary matrix D are held
fixed, and new dictionary atom, &k, as well as new values of
the corresponding representation coefficients are sought such
as to obtain the largest reduction of the representation error.
These steps are repeated until convergence is reached.

In Fig. 3, the examples of scalar and vector parts of
dictionary atoms learned using QK-SVD are shown. We can
see that the scalar parts of dictionary atoms capture intensity
information, whereas the vector parts are sensitive to color
information. Both the scalar and vector parts of a dictionary
atom simultaneously contribute to the sparse representation,
thus enabling joint encoding of intensity and color information.

When sparsity constraint K in (8) equals one, i.e. when each
column of the coefficient matrix S has exactly one non-zero
element, whose value is limited to be one, K-SVD algorithm
reduces to K-means. In this case, sparse signal representation
is computed by finding the closest dictionary atom using
Ls norm distance, setting the corresponding representation
coefficient to one, and all the other coefficients to zeros. Then,
in the dictionary update step, each atom is computed as the
mean of the signals best represented with that particular atom.

C. Image Representation

Feature extraction proceeds in convolutional manner. Image
patches of size w x w pixels are sampled with step size
of r pixels and, after normalization, filtered using learned
feature filters. Given a dictionary D, we compute the sparse
representation s € HM for each image patch using Q-OMPr
algorithm. It can be written as

s =50 4 sWj 4 s@j 4 G 9)

where s) € RM ] = 0,...,3. Analogously to the QPCA
feature filters, the scalar part of the sparse representation is
related to the intensity information, and the three vector parts
are related to red, green and blue color channels.

For each part, s(l>, of the quaternion-valued code, the
elements of the local descriptor, £, are computed in the
following way

7O =150, (10)
f;SQM = max (0, sz(,l) — 9(1)) , an
1,4, = max (0, —sh — 9”)) , (12)
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P L e

where s](f),p =1,..., M are the elements of the vector s(!),

and 01 is the threshold value. By using thresholding, feature
sparsity is further enforced. Therefore, for each part of the
quaternion-valued dictionary atom, there are three elements in
the local descriptor, resulting in 3)/-dimensional descriptors.

The obtained local descriptors, £(), are then spatially pooled
by averaging them up over local image regions. The averaging
region can be the whole image or some smaller image parts,
e.g. image quadrants. In this paper we pool the descriptors
from the whole image because it has been shown earlier [1]
that, for remote sensing images, pooling schemes based on
spatial pyramid do not improve classification accuracy signif-
icantly, while increasing descriptor dimensionality. Therefore,
the parts of the image descriptor, F(!), are obtained as

1 &
i 0
w, 25
P q=1

where N, is the number of patches in the pooling region. We
then apply the power-law transform to the elements of F()

g(Fp)

where 0 < o < 1. The power-law transform is closely related
to Box-Cox transform [37] which has long been used in the
statistics community. It is known to make the distribution of
data more normal, which has been shown to be beneficial for
image classification [38]. Next, we apply Lo normalization to
each part of the image descriptor

=) F(l)

 VIFOE+6

where ¢ is a small positive number. Finally, the four parts
of the image descriptor are stacked and the descriptor is again

FO = (13)

=F% p=1,...,3M, (14)

1=0,...,3, (15)

]
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Fig. 3: Examples of (a) scalar, and (b) vector parts of quaternion-valued dictionary atoms. Dictionary D € H'21*250 jg Jearned
from 11 x 11 pixels image patches and each column from the dictionary is again reshaped to an 11 x 11 pixels patch.

Lo normalized. The resulting image descriptor is a real-valued
vector of dimensionality 3 x 4 x M = 12M.

V. RESULTS

In this section we present an experimental evaluation of
the proposed approach for unsupervised quaternion feature
learning. We compare the classification accuracies obtained
using quaternion and traditional, real-valued, local features.
The impact of all components and hyper-parameters of the
proposed image representation on classification accuracy is
also analyzed. Finally, the obtained results are compared
to the state-of-the-art in unsupervised feature learning and
deep features obtained using pre-trained convolutional neural
network (CNN), as well as to the results obtained using SIFT
and HOG descriptors.

A. Experimental Setup

For the experiments in this paper we use two publicly
available datasets. The first one is UC Merced Land Use
(UCM) dataset' containing high resolution aerial images man-
ually classified into 21 land use classes: agricultural, airplane,
baseballdiamond, beach, buildings, chaparral, denseresidential,
forest, freeway, golfcourse, harbor, intersection, mediumresi-
dential, mobilehomepark, overpass, parkinglot, river, runway,
sparseresidential, storagetanks, tenniscourt. There are 100 im-
ages in each class. All images are color, 256 x 256 pixels
with spatial resolution of 30 cm (1 foot). This dataset was
introduced in [1] for image classification, and in [16] it was
used for image retrieval. We randomly pick 80 images from
the each class for training the classifier, and the remaining
20 images are used for testing. The experiments are repeated

Uhttp://vision.ucmerced.edu/datasets/landuse.html
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five times and means and standard deviations of classification
accuracies are reported.

The second dataset used in the experiments is Brazilian
Coffee Scenes (Coffee) dataset?. It contains 2876 images taken
by the SPOT sensor. The images are manually classified into
two classes. The images containing at least 85% coffee pixels
are assigned to the coffee class, and the images containing
less than 10% of coffee pixels are assigned to the non-coffee
class. Each of the classes contains 50% of all the images in
this dataset. All images are color infrared, 64 x 64 pixels.
This dataset was introduced in [39]. The authors have also
provided five folds with equal contributions of coffee and
non-coffee images. This dataset has been chosen because of
different spectral and spatial properties compared to the UCM
dataset, and because both the textural and spectral information
are essential for good classifier performance.

As a classifier we use LIBSVM [40] implementation of
linear SVM. Multiclass classification is performed by training
one-versus-all SVMs for each class and assigning the test im-
age to the class corresponding to the maximal SVM response.

B. UC Merced Land Use Dataset

1) Feature Learning and Dictionary Size: In this section,
we perform experiments with three types of learned filters: (i)
raw quaternion-valued patches, (ii)) QZCA whitened patches,
and (iii) QPCA transformed patches with dimensionality re-
duction. In all the cases patch size is set to 5 x 5 pixels and step
size is one pixel. For dictionary learning and feature encoding
we use QK-SVD and Q-OMPr algorithms, respectively. In
both algorithms, we set the sparsity constraint to K = 1. We
also experimented with other values of sparsity and obtained
similar classification accuracies. However, by increasing the
value of K, the sparse coding step will be slower, which will
result in slower dictionary learning and image encoding.

The local descriptors are computed using (10)-(12). The
thresholds, ), | = 0,...,3, in (11) and (12) can be
selected using cross-validation. However, since there are four
thresholds, the cross-validation in order to determine each
threshold value would be impractical, and we chose to adap-
tively determine the thresholds for each image as the r-th
percentile of the nonzero values of |s()], instead. We tested
the values for r € {50,60,70,80,90} and obtained the best
results for » = 60. In this way the number of hyper-parameters
of the encoder is reduced from four to one. After the average-
pooling, the power-law transform with o = 0.5 is applied and
the resulting image descriptors are Ly normalized.

We compare the classification accuracies obtained using
quaternion and real-valued local features. For computing real-
valued local features, we first sample image patches and
reshape them into vectors by concatenating pixel values from
all color channels. Further processing is analogous to the
quaternion-valued case except that we found out that the
best results are obtained when the patches are normalized by
subtracting their mean value. Again, three options are tested
for local features: (i) raw patches, (ii)) ZCA whitened patches,
and (iii) PCA-based dimensionality reduction. Local features

Zhttp://www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-dataset/

are then encoded using OMP with a dictionary learned using
K-SVD. The elements of the local descriptor are computed
using (10)-(12) for [ = 0 only. The obtained local descriptors
are subsequently pooled, power-law transformed with o = 0.5,
and Lo normalized.

In Fig. 4 the impact of dictionary size on classification
accuracy is shown. As pointed out in Section IV-C, resulting
descriptor dimensionality for quaternion-valued sparse codes
is 12M, where M is the dictionary size. On the other hand,
when real-valued sparse coding is applied to concatenated
color channels, descriptor dimensionality is 3M. For fair
comparison we present the results obtained for the descriptors
of same dimensionalities, which means that the corresponding
dictionary sizes are not the same. We present the results
obtained using raw and ZCA whitened patches.

We can see that image descriptors obtained using Q-OMPr
consistently outperform descriptors obtained using real-valued
OMP for 2-4%. It is interesting to note that in the real-valued
case the classification accuracy of 88.48% is obtained for
descriptor dimensionality of 12000, whereas in the quaternion-
valued case classification accuracy of 88.29% is obtained for
1500-dimensional descriptors, i.e. eight times lower dimen-
sionality. The reason for better performance of quaternion
feature learning is its ability to jointly encode intensity and
color information in images. Moreover, quaternion-valued
sparse coding yields more efficient solutions in terms of
computational and memory requirements along with better
classification accuracy than in the real-valued case.

When the impact of patch whitening using ZCA on clas-
sification accuracy is considered, it can be seen that, in the
quaternion case, whitening does not improve the classification
accuracy, whereas in the real-valued case there is a slight
improvement of classification accuracy when patch whitening
is used. However, the improvement decreases with increase
of descriptor dimensionality. This behavior can be explained
by comparing signal representations using ZCA and OMP.
ZCA decorrelates patch values by projecting them onto an
orthogonal basis. On the other hand, the elements of the
dictionary used with OMP do not need to be orthogonal.
However, OMP ensures that the signal residual is orthogonal to
all the atoms used for signal approximation. Since each atom
is chosen in such a way as to be maximally correlated with the
current signal residual, it follows that the algorithm chooses
atoms which are as orthogonal as possible to the already used
atoms. When larger dictionaries are used it is more likely that
more orthogonal atoms will be used in signal decomposition
thus making the signal decomposition closer to ZCA. Con-
sequently, OMP results in a similar decomposition as ZCA.
This is somewhat different from the case of K-means feature
encoding [6], where patch whitening has beneficial effect on
classification accuracy for all descriptor dimensionalities as
discussed in detail in [41].

In order to get better understanding of the reasons for good
performance of quaternion-valued local features in Fig. 5,
producers’ accuracies for real and quaternion-valued local
features are shown. The dictionary size in the quaternion-
valued case is 250, and in the real-valued case is 1000.
Therefore, in both cases the descriptor is 3000-dimensional.
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We can see that for almost all classes quaternion-valued
features are better or leveled with real-valued ones. The only
exception is the class parking lot. The largest improvements
in classification accuracy of over 10% have been obtained
for the three residential classes and baseball field. From the
confusion matrices shown in Fig. 6 we can see that the number
of confusions between the residential classes is considerably
smaller for quaternion-valued local features.

When real-valued ZCA whitening is used for feature filter-
ing, the resulting local features are 75-D real-valued vectors,
whereas in the QZCA case the resulting local features are
25-D quaternion-valued vectors. Since for each quaternion
value four real numbers have to be stored, a 25-D quaternion-
valued feature vector corresponds to a 100-D real-valued
vector. Therefore, the effective dimensionality of quaternion-
valued local features is four times the dimensionality of the
original quaternion-valued vector. Considering that PCA-based
feature filtering can also include dimensionality reduction
(4), we tested the impact of local feature dimensionality on
classification accuracy. The results are shown in Fig. 7(a)

for both the QPCA and real-valued PCA cases. Maximum
dimensionality of real-valued local features is 75-D, and
we report the obtained accuracies for dimensionalities up
to 60-D. In both cases the resulting image descriptors are
3000-dimensional. We can see that, again, quaternion-valued
features consistently outperform real-valued ones, with 5-
7% larger accuracies. It is worth noting that when QPCA
is used for dimensionality reduction of local features, 5-
D quaternion-valued local features, i.e. local features with
effective dimensionality of 20, result in less than 1% decrease
of classification accuracy compared to raw patches.

2) Impact of Dictionary Learning and Feature Encoding:
In order to obtain better insight into the impact of dictionary
learning and feature encoding algorithms on classification
accuracy, we analyze the performances obtained using four
unsupervised algorithms for learning the dictionary:

1) Random dictionary (RAND): The dictionary is popu-
lated with vectors of uniformly distributed unit quater-
nions. Thus obtained atoms are subsequently normalized
to unit length.

2) Random patches (RP): The dictionary atoms are ob-
tained by randomly sampling image patches from the
training set and normalizing them to unit length.

3) Quaternion K-means (QK-means): The dictionary is
learned using an extension of K-means algorithm to
quaternion data.

4) Quaternion K-SVD (QK-SVD): The dictionary is
learned using an extension of K-SVD algorithm to
quaternion data, as described in Section IV-B.

For local feature encoding we tested the absolute values
(ABS) of the scalar and vector parts of quaternion-valued
sparse codes (10), and thresholded and rectified (TR) fea-
tures, (11) and (12), as well as their combination. However,
different encoding schemes result in image descriptors of
different dimensionalities, namely ABS encoding yields 4/ -
dimensional descriptors, TR encoding yields 8 M/ -dimensional
descriptors and ABS+TR encoding yields 12M/-dimensional
descriptors, where M is the number of dictionary atoms. For
fair comparison, we fix the descriptor dimensionality to 3000
and learn dictionaries of appropriate size for each encoding
scheme. In these experiments the patch size is fixed to 5 x 5
pixels with step of 1 pixel, and mean pooling (13) is used.

The obtained results are given in Table I. We can see that,
except for the random dictionary, the differences in obtained
accuracies using raw patches and ZCA whitened patches
are small, regardless of the feature encoding method. It is
interesting to note, however, that the random dictionary with
whitened patches is consistently better than when raw patches
are used. Moreover, in combination with thresholded features
it yields classification accuracies of over 80%.

In almost all cases thresholded features outperform modulus
values of sparse codes and the obtained accuracy is slightly
higher when the combination of features is used. Moreover,
when the combination of features is used, it is possible to
use a smaller dictionary, thus making dictionary learning and
sparse coding of patches faster. Dictionaries learned using QK-
means and QK-SVD perform similarly, and, surprisingly, the
dictionary composed of randomly sampled patches performs
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Fig. 6: Confusion matrices for (a) real-valued local features, and (b) quaternion-valued local features obtained on UCM dataset.
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TABLE I: The classification accuracies on UCM dataset for
various combinations of dictionary learning and local feature
encoding. The numbers in parentheses are dictionary sizes. All
results are percent accuracy.

Mean pooling consistently outperforms max pooling for 10-
15%. This is in contrast to results in object recognition and
general scene classification [42] where max pooling yielded
better classification results compared to mean pooling. This

Encoding difference stems from the fact that the pooling region used in

ABS (750) TR 375) ABS+TR (250) aerial image classification comprises the whole image whereas

Dict. raw ZCA raw ZCA raw ZCA . biect iti d 1 lassificati tial

RAND 160 7053 [ 6535 8345 | 6233 52.G7 in object recognition and general scene classification spatia

RP 88.24 88.67 | 89.43 90.48 | 91.00 90.81 pyramids are used. However, it has been already shown [1] that

QK-means | 89.48 86.76 | 88.48  89.09 | 89.81  89.57 spatial pyramid pooling does not improve classification accu-
QK-SVD 87.05 85.90 | 89.76  89.00 90.95  89.33

the same or slightly better than the learned dictionaries. These
results suggest that the good performance is more due to the
feature encoding than to the dictionary learning algorithm.
We also examine the influence of the feature pooling scheme
and power law transform on the classification accuracy. Here,
a dictionary with 250 atoms is learned using QK-SVD. We
vary « in (14) in the range [0.1,1] with step of 0.1 for
mean and max pooling. The results are shown in Fig. 8.

racy for aerial images. Furthermore, the power law transform
is essential for good classification performance, with increase
in accuracy of 5% for a = 0.5 compared to the raw features,
ire. a=1.

3) Impact of Patch Sampling Parameters: We also ana-
lyzed the impact of patch size on classification accuracy.
Having already shown that image descriptors obtained using
quaternion-valued local features outperform the descriptors
obtained using real-valued local features, in the following we
only present the results obtained for the quaternion-valued



JOURNAL OF KIgX CLASS FILES

95

NOF

Accuracy (%)
[00)
(@)

x‘--'x"“"""X""?‘"'"‘""x----x"

TOF e —©— Mean pooling |
+r % Max pooling

65 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1

a

Fig. 8: The impact of power law transform and feature pooling
scheme on classification accuracy on UCM dataset.

case. Raw patches are used as local features, patch step is
one pixel, and dictionary size is 250, corresponding to 3000-
D image descriptors. We varied the patch size from 3 x 3 pixels
to 11 x 11 pixels in steps of 2 pixels. The obtained results are
given in Fig. 7(b). The best results are obtained using patches
of size 5 x 5 pixels. This is important since smaller patch
sizes result in lower dimensional local features, which results
in lower memory and computational requirements.

We varied the patch step size over 1, 2, 4, and 8 pixels.
The patch size is held fixed at 5 x 5 pixels, raw patches
are used as local features, and image descriptors are 3000-
D. The results are shown in Fig. 7(c). The classification
accuracy is the highest for step size of 1 pixel, and decreases
for larger steps. With step of 2 pixels it drops for slightly
over 1%, and with step of 4 pixels for 4%. Therefore, in
order to obtain high classification accuracy, small step size is
needed. This can affect computational complexity, because for
encoding each patch Q-OMP algorithm is used for computing
sparse representation. Fortunately, as we have already shown,
good results can be obtained by choosing K = 1 in (6),
which reduces Q-OMP algorithm to matrix multiplication and
searching for maximum value.

4) Comparison With the State-of-the-Art: We compare
our results with the state-of-the-art classification accura-
cies obtained using three other unsupervised feature learn-
ing approaches tested on UC Merced dataset, namely the
saliency-guided unsupervised feature learning [25], unsuper-
vised feature coding on local patch manifold (LPM) [8], and
quaternion-based feature learning using QPCA and quaternion
K-means clustering (QK-means) [9]. We also present the
selected results obtained using deep features [39] as well
as hand-crafted features, namely multispectral extensions of
SIFT-based BoW classifier (MSIFT) [2] and second-order
features based on histograms of oriented gradients (HOG) [5].

The results are given in Table II. We report the results
obtained using raw quaternion-valued patches and Q-OMP
feature encoding using dictionary with 1000 atoms, resulting
in 12000-D image descriptors. The results for QK-means
are obtained using the code from [9] and with 12000-D

TABLE II: Comparison of classification accuracies on the
UCM dataset.

Algorithm Accuracy (%)
Learned local features
Q-OMP 92.29 +£0.71
OMP 88.48 + 1.05
QK-means (x? kernel) [9] 91.38 +1.03
QK-means (linear kernel) [9] 83.76 + 0.46
LPM [8] 90.26 + 1.51
Saliency [25] 82.72+1.18
Hand-crafted local features
Dense SIFT [3] 81.67 +1.23
MSIFT [2] 90.97 + 1.81
HOG VLAT [5] 92.3
HOG+RGB VLAT [5] 94.3
Deep features
Caffe [39] 93.42+1.00
OverFeat [39] 90.91 £ 1.19

descriptors, whereas the results from [8] and [25] are taken
from the literature.

We can see that the proposed approach outperforms all
the other methods for unsupervised feature learning. More-
over, our classifier is linear SVM, whereas the two closest
approaches, QK-means and LPM, use nonlinear x? and his-
togram intersection kernels, respectively. In comparison with
nonlinear SVM, by using linear SVM we reduce computational
complexity of classifier training from O(N?) to O(N), and
memory requirements from O(N?) to O(N), where N is the
number of training samples.

When compared to hand-crafted local features, our approach
is better than dense SIFT [3], extracted from grayscale images,
and MSIFT [2], extracted from color images. The classifica-
tion accuracy is leveled with HOG-based vectors of locally
aggregated tensors (VLAT), and slightly worse than VLAT
representation obtained using combined HOG and RGB local
features [5]. However, our approach is considerably simpler to
compute than elaborate VLAT representation based on second-
order statistics of hand-crafted HOG and RGB local features.
We believe that our feature learning approach coupled with a
more elaborate feature encoding scheme which uses second-
order statistics of local quaternion features would further
improve the classification performance.

Finally, the classification accuracy obtained with the pro-
posed approach is around 1% worse than that obtained using
deep features [39]. However, our feature learning scheme is
completely unsupervised and, thus, applicable to scenarios
with limited number of training examples.

C. Brazilian Coffee Scenes Dataset

Quaternion image representation (1) has originally been
proposed for color, i.e. visible spectrum, images. On the other
hand, the Coffee dataset contains color infrared images. We
propose to represent color infrared images as pure quaternions

Q(,y) = Quir (2,9) 1 + Qr (v,y) j + Qg (z,y) k,  (16)

where Qnir (z,y), Qr (z,y), and Q, (x,y) are pixel values
in near infrared, red, and green spectral bands, respectively.
When this representation is used, a color infrared image is
regarded as a single entity and the interrelationships between
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classification accuracy for Coffee dataset.

the spectral bands are implicitly included in the definitions
of image processing operators. This image representation is
subsequently used in the same way as for color images.

The values of the encoder hyper-parameters used in the
experiments with the Coffee dataset are the same as those
used with the UCM dataset, that is patch size is 5 x 5 pixels
with step size of one pixel, QK-SVD is used for dictionary
learning and Q-OMP for sparse coding. Subsequently, the local
descriptors are computed using (10)-(12), average pooled,
power-law transformed with o« = 0.5, and L, normalized.

In Fig. 9 classification accuracies obtained with image
descriptors of varying dimensionalities are given. We compare
the performances of quaternion and real-valued local features
with and without ZCA whitening. Similarly to the results
obtained for UCM dataset, quaternion-valued local features
outperform real-valued features for 2-3% for all descriptor
dimensionalities, thus justifying their use. Furthermore, ZCA
whitening does not influence the results in a significant way.

The comparison of the state-of-the-art results with the
proposed feature learning algorithms is given in Table III.
The Q-OMP feature encoding using 1000 dictionary atoms
outperforms both the learning-based and hand-crafted features
from [39]. Remarkably, hand-crafted Border-Interior Pixel
Classification (BIC) descriptor also outperforms CNN on this
task. The reason for this are different spectral characteristics
of the images used for training and testing the network,
namely visible spectrum and color infrared. Unsupervised
feature learning, on the other hand, does not require large
labeled training sets and it is able to adapt to the spectral
and textural characteristics of the data at hand, yielding more
effective visual representation than hand-crafted descriptors.
Therefore, quaternion-valued representation can be also used
with color infrared images and it is able to leverage the existing
interrelationships between near-infrared and visible spectral
bands.

VI. CONCLUSION

In this paper quaternion image representation obtained us-
ing raw image patches as features and Q-OMPr for feature

TABLE III: Comparison of classification accuracies on Coffee
dataset.

Algorithm Accuracy (%)
Q-OMP 90.75 + 0.67
OMP 88.35 +1.78
Convolutional Neural Network (Caffe) [39] 84.82 +0.97
Border-Interior Pixel Classification (BIC) [39] 87.03 +1.17

encoding is proposed for classification of remote sensing
images. In the experiments, it has achieved better classification
accuracies than traditional representation computed using real-
valued OMP for feature encoding. The reason for success
of quaternion image representation is its ability to jointly
encode intensity and spectral information by making use of
interrelationships between spectral bands in an image.

We obtained the highest classification accuracy on UCM
dataset, compared to other unsupervised feature learning ap-
proaches, and better or competitive results in comparison
with hand-crafted features and pre-trained CNN. The obtained
results on Coffee dataset are better than those obtained using
either hand-crafted features or pre-trained CNN. In this way
quaternion feature learning emerged as a viable approach to
computing image representation, especially in situations where
there are not enough labeled data to train CNN, and pre-trained
networks cannot be used because of different characteristics
(e.g. spectral) of images.

The proposed image representation uses simple average
pooling of encoded features, i.e. only the first-order statistics.
However, some of the best results in remote sensing image
classification were obtained using second-order features. The
extraction and evaluation of second-order features obtained
from sparse quaternion image representation is an interesting
direction for future research.

The image representation considered in this paper contains
a single layer only. On the other hand, hierarchical represen-
tations have achieved state-of-the-art classification accuracies
in different domains. The proposed algorithm can be easily
extended to hierarchical structure for classification. Conse-
quently, in the future work we plan to evaluate quaternion
representations at higher levels of hierarchy.
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